Skip to main content

Antipredatory Defensive Roles of Natural Products from Marine Invertebrates

  • Reference work entry
  • First Online:
Handbook of Marine Natural Products

Abstract

This chapter provides a broad and critical evaluation of investigations of the antipredatory defenses of marine invertebrates with a target audience of graduate students in ecology or natural products chemistry. After considering important concepts and theoretical issues associated with the research topic, techniques for assessing invertebrate chemical defenses against predators are detailed, with a focus on potential methodological problems. In particular, the importance of determining concentrations of metabolites in invertebrate tissues using a volumetric rather than gravimetric method is explained. Relevant concepts from the recent literature are reviewed and discussed, including the cost of chemical defenses, synergistic effects of defenses, optimization of defenses, and structure-activity relationships of deterrent metabolites. Comparisons are made between the life histories and evolutionary environments of terrestrial and marine invertebrates to argue that the highly optimized chemical defense mechanisms and complex systems of color mimicry described for some terrestrial insects are unlikely to be equaled among marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay ME et al (1998) Bioassays with marine and freshwater macroorganisms. In: Haynes KF, Millar JG (eds) Methods in chemical ecology. Chapman and Hall, New York, pp 39–141

    Google Scholar 

  2. McClintock JB, Baker BJ (eds) (2001) Marine chemical ecology. CRC Press, Washington, DC, 610 p

    Google Scholar 

  3. Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93:1911–1922

    CAS  Google Scholar 

  4. Paul VJ et al (2007) Chemical defenses: from compounds to communities. Biol Bull 213:226–251

    PubMed  CAS  Google Scholar 

  5. Pohnert G (2004) Chemical defense strategies of marine organisms. Top Curr Chem 239:179–219

    PubMed  CAS  Google Scholar 

  6. Chase JM et al (2002) The interaction between predation and competition: a review and synthesis. Ecol Lett 5:302–315

    Google Scholar 

  7. Rose MR, Mueller LD (2006) Evolution and ecology of the organism, 1st edn. Pearson, Upper Saddle River, 693 p

    Google Scholar 

  8. Whalen KE et al (2010) Biochemical warfare on the reef: the role of glutathione transferases in consumer tolerance of dietary prostaglandins. PLoS One 5(1):e8537

    PubMed  Google Scholar 

  9. Mumby PJ (2009) Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs 28:683–690

    Google Scholar 

  10. Dunlap M, Pawlik JR (1998) Spongivory by parrotfish in Florida mangrove and reef habitats. Mar Ecol 19:325–337

    Google Scholar 

  11. Johnson KH (2000) Trophic-dynamic considerations in relating species diversity to ecosystem resilience. Biol Rev Camb Philos Soc 75:347–376

    PubMed  CAS  Google Scholar 

  12. Randall JE, Hartman WD (1968) Sponge-feeding fishes of the West Indies. Mar Biol 1:216–225

    Google Scholar 

  13. Pawlik JR (1997) Fish predation on Caribbean reef sponges: an emerging perspective of chemical defenses. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th international coral reef symposium, Panama, June 24–29, 1996, vol 2. Smithsonian Tropical Research Institute, Balboa, pp 1255–1258

    Google Scholar 

  14. McClintock JB et al (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368

    PubMed  Google Scholar 

  15. Albrizio S et al (1995) Amphitoxin, a new high molecular weight antifeedant pyridinium salt from the Caribbean sponge Amphimedon compressa. J Nat Prod 58:647–652

    PubMed  CAS  Google Scholar 

  16. Pawlik JR et al (1995) Defenses of Caribbean sponges against predatory reef fish.1. Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    CAS  Google Scholar 

  17. Schulte BA, Bakus GJ (1992) Predation deterrence in marine sponges – laboratory versus field studies. Bull Mar Sci 50:205–211

    Google Scholar 

  18. Long JD, Hay ME (2006) Fishes learn aversions to a nudibranch’s chemical defense. Mar Ecol Prog Ser 307:199–208

    Google Scholar 

  19. Wheat CW et al (2007) The genetic basis of a plant-insect coevolutionary key innovation. Proc Natl Acad Sci USA 104:20427–20431

    PubMed  CAS  Google Scholar 

  20. Warburton K (2003) Learning of foraging skills by fish. Fish Fish 4:203–215

    Google Scholar 

  21. Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73:483–506

    Google Scholar 

  22. Faulkner DJ, Ghiselin MT (1983) Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar Ecol Prog Ser 13:295–301

    Google Scholar 

  23. Dunlap M, Pawlik JR (1996) Video monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Mar Biol 126:117–123

    Google Scholar 

  24. Wulff JL (1994) Sponge feeding by Caribbean angelfishes, trunkfishes, and filefishes. In: van Soest RWM, van Kempen TMG, Braekman J-C (eds) Sponges in time and space: biology, chemistry, paleontology. A.A. Balkema, Rotterdam/Brookfield, pp 265–271

    Google Scholar 

  25. Derby CD et al (2007) Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses. J Chem Ecol 33:1105–1113

    PubMed  CAS  Google Scholar 

  26. Nusnbaum M, Derby CD (2010) Effects of sea hare Ink secretion and its escapin-generated components on a variety of predatory fishes. Biol Bull 218:282–292

    PubMed  CAS  Google Scholar 

  27. Kamio M et al (2010) The purple pigment aplysioviolin in sea hare ink deters predatory blue crabs through their chemical senses. Anim Behav 80:89–100

    Google Scholar 

  28. Grode SH, Cardellina JH (1984) Sesquiterpenes from the sponge Dysidea etheria and the nudibranch Hypselodoris zebra. J Nat Prod 47:76–83

    CAS  Google Scholar 

  29. Haber M et al (2010) Coloration and defense in the nudibranch gastropod Hypselodoris fontandraui. Biol Bull 218:181–188

    PubMed  Google Scholar 

  30. Pawlik JR et al (1988) Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanguineus and its egg ribbons – macrolides derived from a sponge diet. J Exp Mar Biol Ecol 119:99–109

    CAS  Google Scholar 

  31. Roussis V et al (1990) Secondary metabolites of the chemically rich ascoglossan Cyerce nigricans. Experientia 46:327–329

    CAS  Google Scholar 

  32. Becerro MA, Starmer JA, Paul VJ (2006) Chemical defenses of cryptic and aposematic gastropterid molluscs feeding on their host sponge Dysidea granulosa. J Chem Ecol 32:1491–1500

    PubMed  CAS  Google Scholar 

  33. Edmunds M (1991) Does warning coloration occur in nudibranchs? Malacologia 32:241–255

    Google Scholar 

  34. Ritson-Williams R, Paul VJ (2007) Marine benthic invertebrates use multimodal cues for defense against reef fish. Mar Ecol Prog Ser 340:29–39

    Google Scholar 

  35. Ang HP, Newman LJ (1998) Warning colouration in pseudocerotid flatworms (Platyhelminthes, Polycladida). A preliminary study. Hydrobiologia 383:29–33

    Google Scholar 

  36. Kicklighter CE, Hay ME (2006) Integrating prey defensive traits: contrasts of marine worms from temperate and tropical habitats. Ecol Monogr 76:195–215

    Google Scholar 

  37. Meredith TL et al (2007) The polychaete Cirriformia punctata is chemically defended against generalist coral reef predators. J Exp Mar Biol Ecol 353:198–202

    Google Scholar 

  38. Newman LJ, Cannon LRG, Brunckhorst DJ (1994) A new flatworm (platyhelminthes, polycladida) which mimics a phyllidiid nudibranch (mollusca, nudibranchia). Zool J Linn Soc 110:19–25

    Google Scholar 

  39. Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol 30:273–335

    Google Scholar 

  40. Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297

    PubMed  CAS  Google Scholar 

  41. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    CAS  Google Scholar 

  42. Haslam E (1986) Secondary metabolism – fact and fiction. Nat Prod Rep 3:217–249

    CAS  Google Scholar 

  43. Harper MK et al (2001) Introduction to the chemical ecology of marine natural products. In: McClintock JB, Baker BJ (eds) Marine chemical ecology, CRC marine science series. CRC Press, Boca Raton, pp 3–69

    Google Scholar 

  44. Pawlik JR, Fenical W (1989) A re-evaluation of the ichthyodeterrent role of prostaglandins in the Caribbean gorgonian coral Plexaura homomalla. Mar Ecol Prog Ser 52:95–98

    CAS  Google Scholar 

  45. Gerhart DJ (1984) Prostaglandin A2 – an agent of chemical defense in the Caribbean gorgonian Plexaura homomalla. Mar Ecol Prog Ser 19:181–187

    CAS  Google Scholar 

  46. O'Neal W, Pawlik JR (2002) A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Mar Ecol Prog Ser 240:117–126

    Google Scholar 

  47. Gerhart DJ (1986) Prostaglandin A2 in the Caribbean gorgonian Plexaura homomalla – evidence against allelopathic and antifouling roles. Biochem Syst Ecol 14:417–421

    CAS  Google Scholar 

  48. Vrolijk NH, Targett NM (1992) Biotransformation enzymes in Cyphoma gibbosum (gastropoda, ovulidae) – implications for detoxification of gorgonian allelochemicals. Mar Ecol Prog Ser 88:237–246

    CAS  Google Scholar 

  49. Karuso P (1987) Chemical ecology of the nudibranchs. In: Scheuer PJ (ed) Biorganic marine chemistry. Springer, Berlin, pp 32–60

    Google Scholar 

  50. Bakus GJ, Green G (1974) Toxicity in sponges and holothurians – geographic pattern. Science 185:951–953

    PubMed  CAS  Google Scholar 

  51. Jackson JBC, Buss L (1975) Allelopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci USA 72:5160–5163

    PubMed  CAS  Google Scholar 

  52. Bakus GJ (1981) Chemical defense mechanisms on the great barrier reef, Australia. Science 211:497–499

    PubMed  CAS  Google Scholar 

  53. Gemballa S, Schermutzki F (2004) Cytotoxic haplosclerid sponges preferred: a field study on the diet of the dotted sea slug Peltodoris atromaculata (doridoidea: nudibranchia). Mar Biol 144:1213–1222

    Google Scholar 

  54. de Voogd NJ, Cleary DFR (2007) Relating species traits to environmental variables in Indonesian coral reef sponge assemblages. Mar Freshw Res 58:240–249

    Google Scholar 

  55. Mollo E et al (2008) Factors promoting marine invasions: a chemolecological approach. Proc Natl Acad Sci USA 105:4582–4586

    PubMed  CAS  Google Scholar 

  56. Cortesi F, Cheney KL (2010) Conspicuousness is correlated with toxicity in marine opisthobranchs. J Evol Biol 23:1509–1518

    PubMed  CAS  Google Scholar 

  57. Siddon CE, Witman JD (2004) Behavioral indirect interactions: multiple predator effects and prey switching in the rocky subtidal. Ecology 85:2938–2945

    Google Scholar 

  58. Chanas B, Pawlik JR (1997) Variability in the chemical defense of the Caribbean reef sponge Xestospongia muta. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th international coral reef symposium, Panama, June 24–29, 1996. Smithsonian Tropical Research Institute, Balboa, pp 1363–1367

    Google Scholar 

  59. Vervoort HC, Pawlik JR, Fenical W (1998) Chemical defense of the Caribbean ascidian Didemnum conchyliatum. Mar Ecol Prog Ser 164:221–228

    CAS  Google Scholar 

  60. Pawlik JR, Burch MT, Fenical W (1987) Patterns of chemical defense among Caribbean gorgonian corals – a preliminary survey. J Exp Mar Biol Ecol 108:55–66

    Google Scholar 

  61. Pawlik JR, McFall G, Zea S (2002) Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol 28:1103–1115

    PubMed  CAS  Google Scholar 

  62. Slattery M et al (2008) Hybrid vigor in a tropical Pacific soft-coral community. Ecol Monogr 78:423–443

    Google Scholar 

  63. Chanas B, Pawlik JR (1996) Does the skeleton of a sponge provide a defense against predatory reef fish? Oecologia 107:225–231

    Google Scholar 

  64. Chanas B, Pawlik JR (1995) Defenses of Caribbean sponges against predatory reef fish. 2. Spicules, tissue toughness, and nutritional quality. Mar Ecol Prog Ser 127:195–211

    Google Scholar 

  65. Wilson DM et al (1999) Chemical defense of the Caribbean reef sponge Axinella corrugata against predatory fishes. J Chem Ecol 25:2811–2823

    CAS  Google Scholar 

  66. McClintock JB, Baker BJ (1997) Palatability and chemical defense of eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar Ecol Prog Ser 154:121–131

    Google Scholar 

  67. Lippert H et al (2004) Chemical defence against predators in a sub-Arctic fjord. J Exp Mar Biol Ecol 310:131–146

    CAS  Google Scholar 

  68. Hay ME, Kappel QE, Fenical W (1994) Synergisms in plant defenses against herbivores – interactions of chemistry, calcification and plant quality. Ecology 75:1714–1726

    Google Scholar 

  69. Waddell B, Pawlik JR (2000) Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar Ecol Prog Ser 195:125–132

    Google Scholar 

  70. Waddell B, Pawlik JR (2000) Defenses of Caribbean sponges against invertebrate predators. II. Assays with sea stars. Mar Ecol Prog Ser 195:133–144

    Google Scholar 

  71. López-Legentil S, Turon X, Schupp P (2006) Chemical and physical defenses against predators in Cystodytes (ascidiacea). J Exp Mar Biol Ecol 332:27–36

    Google Scholar 

  72. Ferguson AM, Davis AR (2008) Heart of glass: spicule armament and physical defense in temperate reef sponges. Mar Ecol Prog Ser 372:77–86

    Google Scholar 

  73. McClintock JB et al (1994) Homarine as a feeding deterrent in the common shallow-water Antarctic lamellarian gastropod Marseniopsis mollis – a rare example of chemical defense in a marine prosobranch. J Chem Ecol 20:2539–2549

    CAS  Google Scholar 

  74. McClintock JB et al (1994) Chemotactic tube-foot responses of a spongivorous sea star Perknaster fuscus to organic extracts from Antarctic sponges. J Chem Ecol 20:859–870

    Google Scholar 

  75. McClintock JB et al (1994) Chemical defense of the common Antarctic shallow-water nudibranch Tritoniella belli Eliot (mollusca, tritonidae) and its prey, Clavularia frankliniana Roel (cnidaria octocorallia). J Chem Ecol 20:3361–3372

    CAS  Google Scholar 

  76. Furrow FB et al (2003) Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Mar Biol 143:443–449

    Google Scholar 

  77. Harvell CD, Fenical W, Greene CH (1988) Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.).1. Development of an in situ feeding assay. Mar Ecol Prog Ser 49:287–294

    Google Scholar 

  78. Cronin G et al (1995) Effects of storage and extraction procedures on yields of lipophilic metabolites from the brown seaweeds Dictyota ciliolata and D. menstrualis. Mar Ecol Prog Ser 119:265–273

    Google Scholar 

  79. Ruzicka R, Gleason DF (2008) Latitudinal variation in spongivorous fishes and the effectiveness of sponge chemical defenses. Oecologia 154:785–794

    PubMed  Google Scholar 

  80. Ruzicka R, Gleason DF (2009) Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. J Exp Mar Biol Ecol 380:36–46

    Google Scholar 

  81. Pennings SC et al (1994) Effects of sponge secondary metabolites in different diets on feeding by three groups of consumers. J Exp Mar Biol Ecol 180:137–149

    Google Scholar 

  82. Refstie S, Olli JJ, Standal H (2004) Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 239:331–349

    CAS  Google Scholar 

  83. Pisut DP, Pawlik JR (2002) Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J Exp Mar Biol Ecol 270:203–214

    CAS  Google Scholar 

  84. Cronin G, Hay ME (1996) Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology 77:1531–1543

    Google Scholar 

  85. Duffy JE, Paul VJ (1992) Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339

    Google Scholar 

  86. Berenbaum M, Neal JJ (1985) Synergism between myristicin and xanthotoxin, a naturally occurring plant toxicant. J Chem Ecol 11:1349–1358

    CAS  Google Scholar 

  87. Pennings SC (1996) Testing for synergisms between chemical and mineral defenses – a comment. Ecology 77:1948–1950

    Google Scholar 

  88. Hay ME (1996) Defensive synergisms? Reply. Ecology 77:1950–1952

    Google Scholar 

  89. Jones AC, Blum JE, Pawlik JR (2005) Testing for defensive synergy in Caribbean sponges: bad taste or glass spicules? J Exp Mar Biol Ecol 322:67–81

    Google Scholar 

  90. Avila C et al (1991) Defensive strategy of two Hypselodoris nudibranchs from Italian and Spanish coasts. J Chem Ecol 17:625–636

    CAS  Google Scholar 

  91. Harvell CD, Fenical W (1989) Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia spp.) – intracolony localizaiton of defense. Limnol Oceanogr 34:382–389

    Google Scholar 

  92. Swearingen DC, Pawlik JR (1998) Variability in the chemical defense of the sponge Chondrilla nucula against predatory reef fishes. Mar Biol 131:619–627

    Google Scholar 

  93. Kubanek J et al (2002) Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 131:125–136

    Google Scholar 

  94. Becerro MA, Paul VJ, Starmer J (1998) Intracolonial variation in chemical defenses of the sponge Cacospongia sp. and its consequences on generalist fish predators and the specialist nudibranch predator Glossodoris pallida. Mar Ecol Prog Ser 168:187–196

    Google Scholar 

  95. Schupp P et al (1999) Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar Biol 135:573–580

    CAS  Google Scholar 

  96. Slattery M, Starmer J, Paul VJ (2001) Temporal and spatial variation in defensive metabolites of the tropical Pacific soft corals Sinularia maxima and S. polydactyla. Mar Biol 138:1183–1193

    CAS  Google Scholar 

  97. Hoover CA, Slattery M, Marsh AG (2007) Profiling transcriptome complexity and secondary metabolite synthesis in a benthic soft coral, Sinularia polydactyla. Mar Biotechnol 9:166–178

    PubMed  CAS  Google Scholar 

  98. Teeyapant R, Proksch P (1993) Biotransformation of brominated compounds in the marine sponge Verongia aerophoba – evidence for an induced chemical defense. Naturwissenschaften 80:369–370

    CAS  Google Scholar 

  99. Puyana M, Fenical W, Pawlik JR (2003) Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean? Mar Ecol Prog Ser 246:127–135

    CAS  Google Scholar 

  100. Thoms C, Ebel R, Proksch P (2006) Activated chemical defense in Aplysina sponges revisited. J Chem Ecol 32:97–123

    PubMed  CAS  Google Scholar 

  101. Thoms C et al (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch C 59:113–122

    PubMed  CAS  Google Scholar 

  102. Stachowicz JJ, Lindquist N (2000) Hydroid defenses against predators: the importance of secondary metabolites versus nematocysts. Oecologia 124:280–288

    Google Scholar 

  103. Lindquist N (2002) Tridentatols D-H, nematocyst metabolites and precursors of the activated chemical defense in the marine hydroid Tridentata marginata (Kirchenpauer 1864). J Nat Prod 65:681–684

    PubMed  CAS  Google Scholar 

  104. Thoms C, Schupp PJ (2008) Activated chemical defense in marine sponges – a case study on Aplysinella rhax. J Chem Ecol 34:1242–1252

    PubMed  CAS  Google Scholar 

  105. McMurray SE, Blum JE, Pawlik JR (2008) Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Mar Biol 155:159–171

    Google Scholar 

  106. Berenbaum MR, Zangerl AR (1994) Costs of inducible defense – protein limitation, growth and detoxification in parsnip webworms. Ecology 75:2311–2317

    Google Scholar 

  107. Zangerl AR, Arntz AM, Berenbaum MR (1997) Physiological price of an induced chemical defense: photosynthesis, respiration, biosynthesis, and growth. Oecologia 109:433–441

    Google Scholar 

  108. King DJ, Gleadow RM, Woodrow IE (2006) The accumulation of terpenoid oils does not incur a growth cost in Eucalyptus polybractea seedlings. Funct Plant Biol 33:497–505

    CAS  Google Scholar 

  109. Walters KD, Pawlik JR (2005) Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges? Integr Comp Biol 45:352–358

    PubMed  Google Scholar 

  110. Pawlik JR et al (2008) Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off. Mar Ecol Prog Ser 368:137–143

    Google Scholar 

  111. Messchendorp L, Gols GJZ, van Loon JJA (1998) Behavioral effects and sensory detection of drimane deterrents in Myzus persicae and Aphis gossypii nymphs. J Chem Ecol 24:1433–1446

    CAS  Google Scholar 

  112. Pawlik JR, Fenical W (1992) Chemical defense of Pterogorgia anceps, a Caribbean gorgonian coral. Mar Ecol Prog Ser 87:183–188

    CAS  Google Scholar 

  113. Lindel T et al (2000) Structure-activity relationship of inhibition of fish feeding by sponge-derived and synthetic pyrrole-imidazole alkaloids. J Chem Ecol 26:1477–1496

    CAS  Google Scholar 

  114. Assmann M et al (2000) Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar Ecol Prog Ser 207:255–262

    CAS  Google Scholar 

  115. Pawlik JR, Albizati KF, Faulkner DJ (1986) Evidence of a defensive role for limatulone, a novel triterpene from the intertidal limpet Collisella limatula. Mar Ecol Prog Ser 30:251–260

    Google Scholar 

  116. Kubanek J et al (2000) Triterpene glycosides defend the Caribbean reef sponge Erylus formosus from predatory fishes. Mar Ecol Prog Ser 207:69–77

    CAS  Google Scholar 

  117. Kubanek J, Fenical W, Pawlik JR (2001) New antifeedant triterpene glycosides from the Caribbean sponge Erylus formosus. Nat Prod Lett 15:275–285

    PubMed  CAS  Google Scholar 

  118. Cohen SAP et al (2008) Reconstitution of a chemical defense signaling pathway in a heterologous system. J Exp Biol 211:599–605

    PubMed  CAS  Google Scholar 

  119. Burns E et al (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar Ecol Prog Ser 252:105–114

    Google Scholar 

Download references

Acknowledgments

The author thanks his graduate students for editorial comments on earlier drafts of this chapter. This work was supported by grants from the National Science Foundation’s Biological Oceanography Program (OCE 0550468, 1029515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Pawlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Pawlik, J.R. (2012). Antipredatory Defensive Roles of Natural Products from Marine Invertebrates. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_12

Download citation

Publish with us

Policies and ethics