Skip to main content

The Cyanidiales: Ecology, Biodiversity, and Biogeography

  • Chapter
  • First Online:
Red Algae in the Genomic Age

Abstract

The order Cyanidiales (or class Cyanidiophyceae) is comprised of asexual, unicellular red algae that are known to grow in low pH environments (0.2–3.5 or 4.0) and at moderately high temperatures (up to 56°C) and are typically found in acidic geothermal habitats throughout the Earth. No other photosynthetic microorganisms are known to inhabit this combination of conditions. The order Cyanidiales, since 1981, is thought to consist of three genera: Cyanidium, Galdieria, and Cyanidioschyzon (Ciniglia et al., 2004; Gross et al., 2001; Heilmann and Gross, 2001). This group of algae appears to be phylogenetically quite distinct from the main line of descent in the red algae and branches off quite early in geologic time (i.e. ∼ 1.3–1.4 Ga), based on phylogenetic, molecular clock inference and fossil evidence for the first reputed macroalgae, which are presumed to be ancestors of the Rhodophyta (Yoon et al., 2002, 2004, 2006b). In this chapter, we comment on the ecology, biodiversity, and biogeography of these fascinating eukaryotic extremophiles, attempting to assimilate recent, important developments in our understanding of these algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertano, P. and Pinto, G. (1986) The action of heavy metals on the growth of three acidophilic algae. Boll. Soc. Natur. Napoli 95: 319–328.

    CAS  Google Scholar 

  • Albertano, P., Ciniglia, C., Pinto, G. and Pollio, A. (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433: 137–143.

    Article  Google Scholar 

  • Allen, M.B. (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch. Mikrobiol. 32: 270–277.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, R.W. and Staehelin, L.A. (1968) The chemical composition of isolated cell walls of Cyanidium caldarium. J. Gen. Microbiol. 54: 269–276.

    PubMed  CAS  Google Scholar 

  • Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, C., Benning, R.M. and Weber, A.P. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol. 137: 460–474.

    Article  PubMed  CAS  Google Scholar 

  • Bhaya, D., Grossman, A.R., Steunou, A.-S., Khuri, N., Cohan, F.M., Hamamura, N. et al. (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J. 1: 703–713.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T.D. (1978) Thermophilic Microorganisms and Life at High Temperatures. Springer, New York, USA.

    Book  Google Scholar 

  • Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G., and Bhattacharya, D. (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 13: 1827–1838.

    Article  PubMed  CAS  Google Scholar 

  • Cockell, C.S. and Rothschild, L.J. (1999) The effects of UV radiation A and B in diurnal variation in photosynthesis in three taxonomically and ecologically diverse microbial mats. Photochem. Photobiol. 69: 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, J.J. (1936) Yellowstone thermal myxophyceae. Annal. New York Acad. Sci. 36: 1–232.

    Article  Google Scholar 

  • De Luca, P. and Moretti, A. (1983) Floridosides in Cyanidium caldarium, Cyanidioschyzon merolae and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). J. Phycol. 19: 368–369.

    Article  Google Scholar 

  • Doemel, T.D. and Brock, T.D. (1971) The physiological ecology of Cyanidium caldarium. J. Gen. Microbiol. 67: 17–32.

    Google Scholar 

  • Ferris, M.J., Magnuson, T.S., Fagg, J.A., Thar, R., Kuhl, M., Sheehan, K.B. and Henson, J.M. (2003) Microbially mediated sulphide production in a thermal, acidic algal mat community in Yellowstone National Park. Environ. Microbiol. 5: 954–960.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, M.J., Sheehan, K.B., Kühl, M., Cooksey, K., Wigglesworth-Cooksey, B., Harvey, R. and Henson, J.M. (2005) Algal species and light microenvironment in a low-pH, geothermal microbial mat community. Appl. Environ. Microbiol. 71: 64–71.

    Article  Google Scholar 

  • Geitler, L. (1933) Diagnoses neuer Blaualgen von den Sunda-Insela. Arch. Hydrobiol. Suppl. 12: 622–634.

    Google Scholar 

  • Gross, W. (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 33: 31–37.

    Article  Google Scholar 

  • Gross, W. and Gross, S. (2001) Physiological characterization of the acidophilic red alga Galdieria sulphuraria isolated from a mining area. Nova Hedwigia, Beiheft 123: 523–530.

    Google Scholar 

  • Gross, W. and Oesterhelt, C. (1999) Ecophysiological studies of the red alga Galdieria sulphuraria isolated from southwest Iceland. Plant Biol. 1: 694–700.

    Article  Google Scholar 

  • Gross, W. and Schnarrenberger, C. (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol. 36: 633–638.

    CAS  Google Scholar 

  • Gross, W., Heilmann, I., Lenze, D. and Schnarrenberger, C. (2001) Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. Eur. J. Phycol. 36: 275–280.

    Article  Google Scholar 

  • Gross, W., Oesterhelt, C., Tischendorf, G. and Lederer, F. (2002) Charaterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Rebublic). Eur. J. Phycol. 37: 477–482.

    Article  Google Scholar 

  • Heilmann, I. and Gross, W. (2001) Genetic diversity of thermo-acidophilic red algae according to random amplified polymorphic DNA (RAPD) analysis. Nova Hedwigia Beiheft 123: 531–539.

    Google Scholar 

  • Holm-Hanson, O., Lubin, D., and Helbling, E.W. (1993) Ultraviolet radiation and its effects on organisms in aquatic environments, In A.R. Young, L. Bjorn, J. Mohan, and W. Nultsch (eds.) Environmental UV Photobiology. Plenum Press, New York.

    Google Scholar 

  • Jackson, C.R., Langner, H.W., Donahoe-Christiansen, J., Inskeep, W.P. and McDermott, T.R. (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 3: 532–542.

    Article  PubMed  CAS  Google Scholar 

  • Kallas, T. and Castenholz, R.W. (1982a) Internal pH and ATP-ADP pools in the cyanobacterium, Synechococcus sp. during exposure to growth-inhibiting low pH. J. Bacteriol. 149: 229–236.

    PubMed  CAS  Google Scholar 

  • Kallas, T. and Castenholz, R.W. (1982b) Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J. Bacteriol. 149: 237–246.

    PubMed  CAS  Google Scholar 

  • Lehr, C.R., Frank, S.D., Norris, T.B., D’Imperio, S., Kalinin, A.V., Toplin, J.A., Castenholz, R.W. and McDermott, T.R. (2007a) Cyanidia (Cyanidiales) population diversity and dynamics in an acid-sulfate chloride spring in Yellowstone National Park. J. Phycol. 43: 3–14.

    Article  CAS  Google Scholar 

  • Lehr, C.R., Kashyap, D.R. and McDermott, T.R. (2007) New insights into microbial oxidation of arsenic and antimony oxidation. Appl. Environ. Microbiol. 73: 2386–2389.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S., Offner, G.D. and Troxler, R.F. (1990) Studies on Cyanidium caldarium phycobiliprotein pigment mutants. Plant Physiol. 93: 772–777.

    Article  PubMed  CAS  Google Scholar 

  • Logares, R., Rengefors, K., Kremp, A., Shalchian-Tabrizi, K., Boltovskoy, A., Tengs, T., Shurtleff, A. and Klaveness, D. (2007) Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microb. Ecol. 53: 549–561.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S.Y. and Mori, T. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S.R., Purugganan, M.D. and Curtis, S.E. (2006) Molecular population genetics and phenotypic diversification of two populations of the thermophilic cyanobacterium Mastigocladus laminosus. Appl. Environ. Microbiol. 72: 2793–2800.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, D.K., Ball, J.W. and McClesey, R.B. (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Pak, In: W.P. Inskeep (ed.) Geothermal Biology and Geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana, pp. 73–94.

    Google Scholar 

  • Oesterhelt, C. and Gross, W. (2002) Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria. Plant Physiol. 128: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, N., Sato, N. and Kuroiwa, T. (1998) Structure and organization of the mitochondrial genome of the unicellular red algae Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res. 26: 5190–5198.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, N. et al. (2003) Complete sequence analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res. 10: 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, D. (1980) Distribution of soil mercury and the development of soil mercury anomalies in the Yellowstone geothermal area, Wyoming. Econ. Geol. 75: 730–741.

    Article  CAS  Google Scholar 

  • Pinto, G. and Taddei, R. (1986) Evaluation of toxic effects of heavy metals on unicellular algae. V – analysis of the inhibition manifesting itself with an increased lag phase. Boll. Soc. Natur. Napoli 95: 303–316.

    CAS  Google Scholar 

  • Pinto, G. (2007) Cyanidiophyceae: looking back – looking forward, In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, The Netherlands, pp. 389–397.

    Google Scholar 

  • Pinto, G., Albertano, P. and Pollio, A. (1994) Italy’s contribution the the systematics of Cyanidiumn caldarium ‘sensu lato’, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, The Netherlands, pp. 157–166.

    Chapter  Google Scholar 

  • Planer-Friedrich, B. and Merkel, B.J. (2006) Volatile metals and metalloids in hydrothermal gases. Environ. Sci. Technol. 40: 3181–3187.

    Article  PubMed  CAS  Google Scholar 

  • Planer-Friedrich, B., Lehr, C., Matschullat, J., Merkel, B.J., Nordstrom, D.K. and Sandstrom, M.W. (2006) Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochimica 70: 2480–2491.

    Article  CAS  Google Scholar 

  • Proctor, V.W. (1959) Dispersal of fresh-water algae by migratory water birds. Science 130: 623–624.

    Article  PubMed  CAS  Google Scholar 

  • Toplin, J.A., Norris, T.B., Lehr, C.R., McDermott, T.R. and Castenholz, R.W. (2008) The thermo-acidophilic Cyanidiales: biogeographic and phylogenetic diversity in Yellowstone National Park, Japan, and New Zealand. Appl. Environ. Microbiol. 74: 2822–2833.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.J., Spear, J.R. and Pace, N. (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434: 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Ward, D.M. and Castenholz, R.W. (2000) Cyanobacteria in geothermal habitats, In: B.A. Whitton and M. Potts (eds.) Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer, Dordrecht, The Netherlands, pp. 37–59.

    Google Scholar 

  • Ward, D.M., Bateson, M.M., Ferris, M.J., Kühl, M., Wieland, A., Koeppel, A. and Cohan, F.M. (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos. Trans. R. Society Lond. B. Biol. Sci. 361: 1997–2008.

    Article  Google Scholar 

  • Whitaker, R.J., Grogan, D.W. and Taylor, J.W. (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301: 976–978.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S.Y., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99: 15507–15512.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S.Y., Hackett, J.D., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809–818.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H.S., Ciniglia, C., Wu, M., Comeron, J.M., Pinto, G., Pollio, A. and Bhattacharya, D. (2006a) Establishment of endolithic populations of extremeophilic Cyanidiales (Rhodophyta). BMC Evol. Biol. 6: 78 (12 pp) (online).

    Article  PubMed  Google Scholar 

  • Yoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. and Bhattacharya, D. (2006b) Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42: 482–492.

    Article  CAS  Google Scholar 

  • Yoshimura, E., Nagasaka, S., Sato, Y., Satake, K. and Mori, S. (1999) Extraordinary high aluminum tolerance of the acidophilic thermophjilic alga, Cyanidium caldarium. Soil Sci. Plant Nutr. 45: 721–724.

    Article  CAS  Google Scholar 

  • Yoshimura, E., Nagasaka, S., Satake, K. and Mori, S. (2000) Mechanism of aluminum tolerance in Cyanidium caldarium. Hydrobiologia 433: 57–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for writing of this paper was from NSF Microbial Interactions and Processes (MCB-0702177). The unpublished sequence work of Elizabeth Perry for the Icelandic isolates is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Castenholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Castenholz, R.W., McDermott, T.R. (2010). The Cyanidiales: Ecology, Biodiversity, and Biogeography. In: Seckbach, J., Chapman, D. (eds) Red Algae in the Genomic Age. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3795-4_19

Download citation

Publish with us

Policies and ethics