Skip to main content

Environmental Nanotechnology: Nanoparticles for Bioremediation of Toxic Pollutants

  • Chapter
Bioremediation Technology

Abstract

The size dependent behaviour of any particle relates to some of its unique properties. This gave rise to rapidly growing field of Nanosciences. Nanotechnology has attracted considerable interest of both scientific and industrial community in the past few years. Nanotechnology inter-relates various research areas and applied sciences like physics, chemistry, biology, electronics and material sciences. It is often described as an emerging technology which is truly capable of revolutionizing our approaches to common problems. Nanotechnology involves the design, characterization, production and application of structures/particles by controlling their size and shape at nanoscale. An important challenge in nanotechnology is to engineer particles with desired optical and electronic properties by controlling their size and shape. This can be achieved by chemical processes and also by biological agents. Utilization of microorganisms for intracellular/extracellular synthesis of nanoparticles with different chemical composition, size, shapes and controlled monodispersity (of similar size and shape) can be a novel biological, economically viable and eco-friendly means for biosynthesis of nanoparticles. Nanotechnology holds promise in improving various aspects of life ranging from medicine to industrial materials. Also, Nanotechnology has much more to offer to environmental protection, reduction and clean-up of pollution, energy production and conservation. This chapter is an attempt to introduce the readers to the nanoworld and its use for bioremediation of toxic pollutants in the environment. This discussion also raises some of the important questions like what will be the fate of nanomaterials released in the environment and their consequent impact on the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adesina, A.A. (2004). Industrial exploitation of photocatalysis: Progress, perspectives and prospects. Catal. Surv. Asia, 8(4): 265-273.

    Article  CAS  Google Scholar 

  • Alfvén, T., Järup, L. and Elinder, C.G. (2002). Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria. Environ Health Persp., 110: 699-702.

    Article  Google Scholar 

  • Alivisatos, A.P. (2001). Less is more in medicine. Scientific American, 9: 59-65.

    Google Scholar 

  • Alvarez-Ayuso, E., Garcia-Sanchez, A. and Querol, X. (2003). Purification of metal electroplating waste waters using zeolites. Water Res., 37: 4855-4862.

    Article  CAS  Google Scholar 

  • Aorkas, M., Tsiourvas, D. and Paleos, C.M. (2003). Functional dendrimeric "nanosponges" for the removal of polycyclic aromatic hydrocarbons from water. Chem. Mater, 15(14): 2844-2847.

    Article  Google Scholar 

  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293(5528): 269-271.

    Article  CAS  Google Scholar 

  • Auffan, M., Rose, J., Wiesner, M.R. and Bottero, J.Y. ( 2009). Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 157: 1127-1133.

    Article  CAS  Google Scholar 

  • Bae, E. and Choi, W. (2003). Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ. Sci. Technol., 37(1): 147-152.

    Article  CAS  Google Scholar 

  • Baesman, S.M., Bullen, T.D., Dewald, J., Zhang, D., Curran, S., Islam, F.S., Beveridge, T.J. and Oremland, R.S. (2007). Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria that Use Te Oxyanions as Respiratory Electron Acceptors. Applied and Environmental Microbiology, 73(7): 2135-2143.

    Article  CAS  Google Scholar 

  • Bai, H.J., Zhang, Z.M., Guo, Y. and Yang, G.E. (2009). Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces B: Biointerfaces, 70: 142-146.

    Article  CAS  Google Scholar 

  • Birnbaum, E.R., Rau, K.C. and Sauer, N.N. (2003). Selective anionbinding from water using soluble polymers. Sep. Sci. Technol., 38(2): 389-404.

    Article  CAS  Google Scholar 

  • Biswas, P. and Wu, C.Y. (2005). Nanoparticles and the Environment. Journal of Air & Waste Management Association, 55: 708-746.

    CAS  Google Scholar 

  • Blakemore, R.P. (1975). Magnetotactic bacteria. Science, 190: 377-379.

    Article  CAS  Google Scholar 

  • Cheng, X., Kan, A.T. and Tomson, M.B. (2004). Naphthalene Adsorption and Desorption from Aqueous C60 Fullerene. J. Chem. Eng. Data, 49: 675-683.

    Article  CAS  Google Scholar 

  • Chitose, N., Ueta, S. and Yamamoto, T.A. (2003). Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, gamma-ray and electron beams. Chemosphere, 50(8): 1007-1013.

    Google Scholar 

  • Cunningham, D.P. and Lundie, L.L. (1993). Precipitation of cadmium by Clostridium thermoaceticum. ApplEnviron Microbiol., 9: 7-14.

    Google Scholar 

  • De Windt, W., Aelterman, P. and Verstraete, W. (2005). Bioreductive deposition of palladium(0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol., 7: 314-325.

    Article  Google Scholar 

  • DeFriend, K.A., Wiesner, M.R. and Barron, A.R. (2003). Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J. Membr. Sci., 224(1-2): 11-28.

    Article  CAS  Google Scholar 

  • Deliyanni, E.A., Bakoyannakis, D.N., Zouboulis, A.I. and Matis, K.A. (2003). Sorption of As(V) ions by akagane'ite-type nanocrystals. Chemosphere, 50(1): 155-163

    Article  CAS  Google Scholar 

  • Derfus, A.M., Chan, W.C.W. and Bhatia, S.N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano lett., 4: 11-18.

    Article  CAS  Google Scholar 

  • Diallo, M.S., Christie, S., Swaminathan, P., Balogh, L., Shi, X., Um, W., Papelis, C., Goddard III, W.A. and Johnson Jr., J.H. (2004). Dendritic chelating agents 1. Cu(II) binding to ethylenediamine core poly(amidoamine) dendrimers in aqueous solutions. Langmuir, 20: 2640-2651.

    Google Scholar 

  • Diallo, M.S. (2004). Water treatment by dendrimer enhanced filtration. US Patent 7470369. Noble metal nanoparticles for water purification: A critical review Thin Solid Films, In Press, Corrected Proof, Available online 1 April 2009.

    Google Scholar 

  • Diallo, M.S., Christie, S., Swaminathan, P., Johnson Jr., J.H. and Goddard, W.A. III. (2005). Dendrimer enhanced ultrafiltration. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environmental Science & Technology, 39: 1366-1377.

    Google Scholar 

  • Diallo, M.S. and Savage, N. (2005). Nanoparticles and water quality. Journal of Nanoparticle Research, 7: 325-330.

    Article  CAS  Google Scholar 

  • Dror, I., Baram, D. and Berkowitz, B. (2005). Use of nanosized catalysts for transformation of chloro-organic pollutants. Environ. Sci. Technol., 39(5): 1283-1290.

    Article  CAS  Google Scholar 

  • Ezaki, T., Tsukhara, T., Moriguchi, J., Furuki, K., Fukui, Y., Ukai, H., Okamoto, S., Sakurai, H., Honda, S. and Ikeda, M. (2003). No clear-cut evidence for cadmium- induced renal tubular dysfunction among over 10,000 women in the Japanese general population: A nationwide large-scale survey. International Archives of Occupational and Environmental Health, 76: 186-196.

    CAS  Google Scholar 

  • Favre-Reguillon, A., Lebuzit, G., Fooz, J. and Guy, A. (2003). Selective concentration of uranium from seawater by nanofiltration. Ind. Eng. Chem. Res., 42: 5900-5904.

    Article  CAS  Google Scholar 

  • Fre'chet, J.M.J. and Tomalia, D.A. (eds.) (2001). Dendrimers and Other Dendritic Polymers. Wiley and Sons, New York.

    Google Scholar 

  • Fryxell, G.E., Lin, Y., Fiskum, S., Birnbaum, J.C., Wu, H., Kemner, K. and Kelly, S. (2005). Self-assembled monolayers on mesoporous supports. Environ. Sci. Technol., 39(5): 1324-1331.

    Article  CAS  Google Scholar 

  • Fugetsu, B., Satoh, S., Shiba, T., Mizutani, T., Lin, Y.B., Terui, N. and Al. (2004). Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ. Sci. Technol., 38(24): 6890-6896.

    Article  CAS  Google Scholar 

  • Kabra, K., Chaudhary, R. and Sawhney, R.L. (2004). Treatment of hazardous organic and inorganic compounds through aqueous phase photocatalysis: A review. Ind. Eng. Chem. Res, 43(24): 7683-7696.

    Article  CAS  Google Scholar 

  • Kanel, S.R., Manning, B., Charlet, L. and Choi, H. (2005). Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39: 1291-1298.

    Article  CAS  Google Scholar 

  • Kaushik, N., Thakkar, M.S., Snehit, S., Mhatre, M.S. and Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(2): 257-262.

    Article  Google Scholar 

  • Kelly, S.D., Kemmer, K.M., Fryxell, G.E., Liu, J., Mattigod, S.V. and Ferris, K.F. (2001). X-ray-absorption fine-structure spectroscopy study of the interactions between contaminant tetrahedral anions and self-assembled monolayers on mesoporous supports. J. Phys. Chem. B, 105(27): 6337-346.

    Article  CAS  Google Scholar 

  • Kircher, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A.M., Gaub, H.E., Stolzle, S, Fertig, N. and Parak, A.J. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano lett., 5: 331-338.

    Article  Google Scholar 

  • Konishi, Y., Tsukiyama, T., Tachimi, T., Saitoh, N., Nomura, T. and Nagamine, S. (2007). Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochimica Acta, 53(1): 186-192.

    Article  CAS  Google Scholar 

  • Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., Hishida, H., Takahashi, Y. and Uruga, T. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Journal of Biotechnology, 128: 648-653.

    Article  CAS  Google Scholar 

  • Krumov, N., Oder, S., Perner-Nochta, I., Angelov, A. and Posten, C. (2007). Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. Journal of Biotechnology, 132: 481-486.

    Article  CAS  Google Scholar 

  • Latif, B. (2006). Nanotechnology for Site Remediation: Fate and Transport of Nanoparticles in Soil and Water Systems. Nanotechnology for Site Remediation Fact Sheet United States Environmental Protection Emergency Response October 2008 EPA 542-F-08-009.

    Google Scholar 

  • Lazaridis, N.K., Bakoyannakis, D.N. and Deliyanni, E.A. (2005). Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite. Chemosphere, 58(1): 65-73.

    Article  CAS  Google Scholar 

  • Lee, J., Kim, M., Yoo, B., Myung, N.V., Maeng, J., Lee, T., Dohnalkova, A.C., Fredrickson, J.K., Sadowsky, M.J. and Hur, H. (2007). Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. PNAS, 104(51): 20410-20415.

    Google Scholar 

  • Li, Q.L, Yuan, D.X. and Lin, Q.M. (2004). Evaluation of multiwalled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr., 1026: 283-288.

    Article  CAS  Google Scholar 

  • Li, Y.H., Ding, J., Luan, Z.K., Di, Z.C., Zhu, Y.F., Xu, C., Wu, D.H. and Wei, B.Q. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14): 2787-2792.

    Article  CAS  Google Scholar 

  • Mangun, C.L., Yue, Z.R, Economy, J., Maloney, S., Kemme, P. and Cropek, D. (2001). Adsorption of organic contaminants from water using tailored ACFs Carbon. Chem. Mater, 13: 2356-2360.

    Article  CAS  Google Scholar 

  • Meyer, D.E., Wood, K., Bachas, L.G. and Bhattacharyya, D. (2004). Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environ. Prog., 23(3): 232-242.

    Article  CAS  Google Scholar 

  • Mohsen, M.S., Jaber, J.O. and Afonso, M.D. (2003). Desalination of brackish water by nanofiltration and reverse osmosis. Desalination, 157(1): 167.

    Article  CAS  Google Scholar 

  • Moreno, N., Querol, X. and Ayora, C. (2001). Utilization of zeolites synthesized from coal fly ash for the purification of acid mines water. Environ. Sci. Technol., 35: 3526-3534.

    Article  CAS  Google Scholar 

  • Mortimer, M., Kasemets, K. and Kahru, A. (2010). Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 269(2-3): 182-189.

    Article  CAS  Google Scholar 

  • Niu, Y. and Crooks, R.M. (2003). Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. Comptes Rendus Chimie, 6(8-10): 1049-1059.

    Article  CAS  Google Scholar 

  • Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Lineham, J.C., Matson, D.W., Penn, R.L. and Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol., 39(5): 1221-1230.

    Article  CAS  Google Scholar 

  • Oremland, R.S., Herbel, M.J., Blum, J.S., Langley, S., Beveridge, T.J., Ajayan, P.M., Sutto, T., Ellis, A.V. and Curran, S. (2004). Structural and Spectral Features

    Google Scholar 

  • of Selenium Nanospheres Produced by Se-Respiring Bacteria. Applied and Environmental Microbiology, 70(1): 52-60.

    Google Scholar 

  • Ottaviani, M.F., Favuzza, P., Bigazzi, M., Turro, N.J., Jockusch, S. and Tomalia, D.A. (2000). A TEM and EPR investigation of the competitive binding of uranyl ions to starburst dendrimers and liposomes: Potential use of dendrimers as uranyl ion sponges. Langmuir, 16(19): 7368-7372.

    Article  CAS  Google Scholar 

  • Peng, X., Luan, Z., Ding, J., Di, Z., Li, Y. and Tian, B. (2005). Ceria nanoparticles supported nanotubes for the removal of arsenate from water. Mater. Lett., 59: 399-403.

    Article  CAS  Google Scholar 

  • Peng, X.J., Li, Y.H., Luan, Z.K., Di, Z.C., Wang, H.Y., Tian, B.H. and Jia, Z.P. (2003). Adsorption ofl, 2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett., 376(1-2): 154-158.

    Article  CAS  Google Scholar 

  • Qi, L. and Xu, Z. (2004). Lead sorption from aqueous solutions on chitosan nanoparticles. Colloid. Surf. A., 251(1-3): 183-190.

    Article  CAS  Google Scholar 

  • Quan, X., Yang, S.G., Ruan, X.L. and Zhao, H.M. (2005). Preparation of titania nanotubes and their environmental applications as electrode. Environ. Sci. Technol., 39: 3770-3775.

    Article  CAS  Google Scholar 

  • Riddin, T.L., Govender, Y., Gericke, M. and Whiteley, C.G. (2009). Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme and Microbial Technology, 45(4): 267-273.

    Article  CAS  Google Scholar 

  • Savage, N. and Diallo, M.S. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7: 331-342.

    Article  CAS  Google Scholar 

  • Schrick, B., Blough, J.L., Jones, A.D. and Mallouk, T.E. (2002). Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater, 14(12): 5140-5147.

    Article  CAS  Google Scholar 

  • Shan, G.B., Xing, J.M., Zhang, H.Y. and Liu, H.Z. (2005). Biodesulfurization of dibenzothiopene by microbial cells coated with magnetite nanoparticles. Appl. Environ. Microbiol., 71: 4497-4502.

    Article  CAS  Google Scholar 

  • Sondi, I. and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E-coli as a model for Gram-negative bacteria. J. Coll. Interf. Sci., 275(1): 177-182.

    Article  CAS  Google Scholar 

  • Scalbert, A., Johnson, I.T. and Saltmarsh, M. (2005). Polyphenols: Antioxidants and Beyond. Am. J. Clin. Nutr, 81: 215 S-217 S.

    CAS  Google Scholar 

  • Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R. and Ajayan, P.M. (2004). Nature Mater, 3(9): 610-614.

    Article  CAS  Google Scholar 

  • Stanton, B.W., Harris, J.J., Miller, M.D. and Bruening, M.L. (2003). Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir, 19(17): 7038-7042.

    Article  CAS  Google Scholar 

  • Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde, K.J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17): 6679-6686.

    Article  CAS  Google Scholar 

  • Sweeney, R.Y., Mao, C., Gao, X., Burt, J. L., Belcher, A.M., Georgiou, G. and Iverson, B.L. (2004). Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chemistry & Biology, 11: 1553-1559.

    Article  CAS  Google Scholar 

  • Theron,. J., Walker, J.A. and Cloete, T.E. (2008). Nanotechnology and Water Treatment: Applications and Emerging Opportunities. Critical Reviews in Microbiology, 34(1): 43-69.

    Article  CAS  Google Scholar 

  • Tratnyek, P.G. and Johnson, R.L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1: 44-48.

    Article  Google Scholar 

  • Tungittiplakorn, W., Cohen, C. and Lion, L.W. (2005). Engineered polymeric nanoparticles for remediation of hydrophobic contaminants. Environ. Sci. Technol., 39: 1354-1358.

    Article  CAS  Google Scholar 

  • Tungittiplakorn, W., Lion, L.W., Cohen, C. and Kim, J.Y. (2004). Engineered polymeric nanoparticles for soil remediation. Environ.Sci. Technol., 38: 1605-1610.

    Article  CAS  Google Scholar 

  • US Bureau of Reclamation and Sandia National Laboratories (2003). Desalination and water purification technology roadmap—A report of the executive committee. Water Purification Research and Development Program Report No 95, US Department of Interior, Bureau of Reclamation.

    Google Scholar 

  • US Environmental Protection Agency (1998). Microbial and disinfection by-product rules. Federal Register, 63(241): 69389-69476.

    Google Scholar 

  • Van der Bruggen, B. and Vandecasteele, C. (2003). Removal of pollutants from surface water and groundwater by nanofiltration overview of possible applications in the drinking water industry. Environ. Pollut., 122(3): 435-445.

    Article  Google Scholar 

  • Watanabe, T., Zhang, Z.W., Moon, C.S., Shimbo, S., Nakatsuka, H., Matsuda-Inoguchi, N., Higashikawa, K. and Ikeda, M. (2000). Cadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981. IntArch Occup Environ Health, 73: 26-34.

    Article  CAS  Google Scholar 

  • Watson, J.H.P., Cressey, B.A., Roberts, A.P., Ellwood, D.C., Charnock, J.M. Soper, A.K. (2000). Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. Journal of Magnetism and Magnetic Materials, 214(1-2): 13-30.

    Article  CAS  Google Scholar 

  • Yantasee, W., Lin, Y., Fryxell, G.E., Busche, B.J. and Birnbaum, J.C. (2003). Removal of heavy metals from aqueous solution using novel nanoengineered sorbents: Self- assembled carbamoylphosphonic acids on mesoporous silica. Separ. Sci. Technol., 38(15): 3809-3825.

    Article  CAS  Google Scholar 

  • Yasuhiro, K., Kaori, O., Norizoh, S., Toshiyuki, N., Shinsuke, N., Hajime, H., Yoshio, T. and Tomoya, U. (2007). Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. Journal of Biotechnology, 128(3): 648-653.

    Article  Google Scholar 

  • Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5: 323-332.

    Article  CAS  Google Scholar 

  • Zhao, H.T. and Nagy, K.L. (2004). Dodecyl sulfate-hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J. Coll. Interf. Sci., 274(2): 613-624.

    Article  CAS  Google Scholar 

  • URL: http://www.freedoniagroup.com/Nanomaterials.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Cameotra, S.S., Dhanjal, S. (2010). Environmental Nanotechnology: Nanoparticles for Bioremediation of Toxic Pollutants. In: Fulekar, M.H. (eds) Bioremediation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3678-0_13

Download citation

Publish with us

Policies and ethics