Skip to main content

Priming Effects in Relation to Soil Conditions – Mechanisms

  • Reference work entry
  • First Online:
Encyclopedia of Agrophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions and terms

Priming effect is defined as a short-term change in the turnover of soil organic matter caused by treatments, usually addition of organic C to the soil (Kuzyakov et al., 2000) (Figure 1). Usually since the soil organic matter (SOM) turnover is not directly measured, but it is determined by changes in CO2 efflux rates or N mineralization rates, the origin of extra CO2-C (primed carbon) or N cannot be directly evaluated. Therefore, the real priming effect (RPE) cannot be assessed based only on extra CO2. Other processes, such as accelerated microbial turnover may contribute to the changes in the CO2 efflux rates or N mineralization rates (Dalenberg and Jager, 1981; Wu et al., 1993; De Nobili et al., 2001). Accelerated CO2 evolution in response to the activation of microbial metabolism and higher microbial biomass turnover is not related to the SOM turnover and is termed as apparent priming effect(APE). Usually, the microbial succession initiated by the input of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alexandrovskiy, A. L., and Chichagova, O. A., 1998. Radiocarbon age of Holocene Paleosols of the East European forest-steppe zone. Catena, 34, 197–207.

    CAS  Google Scholar 

  • Bell, J. M, Smith, J. L., Bailey, V. L., and Bolton, H., 2003. Priming effect and C storage in semi-arid no-till spring crop rotations. Biology and Fertility of Soils, 37, 237–244.

    CAS  Google Scholar 

  • Blagodatskaya, E.V., and Anderson, T-H., 1998. Interactive effects of pH and substrate quality on the fungal-to-bacteria ratio and QCO2 of microbial communities in forest soils. Soil Biology and Biochemistry, 30, 1269–1274.

    CAS  Google Scholar 

  • Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T-H., and Kuzyakov, Y., 2007. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37, 95–105.

    Google Scholar 

  • Blagodatskaya, ?., and Kuzyakov, Y., 2008. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology & Fertility of Soils 45, 115–131.

    Google Scholar 

  • Brant, J. B., Sulzman, E. W., and Myrold, D. D., 2006. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 38, 2219–2232.

    CAS  Google Scholar 

  • Brookes, P. C., Ocio, J. A., and Wu, J., 1990. The soil microbial biomass: its measurements, properties and role in soil nitrogen and carbon dynamics following substrate incorporation. Soil Microorganisms, 35, 39–51.

    Google Scholar 

  • Burmolle, M., Hansen, L. H., Oregaard, G., and Sorensen, S. J., 2003. Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microbial Ecology, 45, 226–236.

    CAS  PubMed  Google Scholar 

  • Cardon, Z. G., 1996. Influence of rhizodeposition under elevated CO2 on plant nutrition and soil organic matter. Plant and Soil, 187, 277–288.

    CAS  Google Scholar 

  • Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A., and Parkhurst, D. F., 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359–2365.

    Google Scholar 

  • Chander, K., Goyal, S., Mundra, M. C., and Kapoor, K. K., 1997. Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biology and Fertility of Soils, 24, 306–310.

    CAS  Google Scholar 

  • Cheng, W., and Kuzyakov, Y., 2005. Root effects on soil organic matter decomposition. In: Wright S., and Zobel, R. (eds.), Roots and Soil Management: Interactions Between Roots and the Soil. Agronomy Monograph No. 48. ASA, Madison WI US, pp. 119–143.

    Google Scholar 

  • Conde, E., Cardenas, M., Ponce-Mendoza, A., Luna-Guido, M. L., Cruz-Mondragon, C., and Dendooven, L., 2005. The impacts of inorganic nitrogen application on mineralization of C-14-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biology and Biochemistry, 37, 681–691.

    CAS  Google Scholar 

  • Dalenberg, J. W., and Jager, G., 1981. Priming effect of small glucose additions to 14C-labeled soil. Soil Biology and Biochemistry, 13, 219–223.

    CAS  Google Scholar 

  • De Neve, S., Saez, S. G., Daguilar, B. C., Sleutel, S., and Hofman, G., 2004. Manipulating N mineralization from high N crop residues using on- and off-farm organic materials. Soil Biology and Biochemistry, 36, 127–134.

    CAS  Google Scholar 

  • De Nobili, M., Contin, M., Mondini, C., and Brookes, P. C., 2001. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biology and Biochemistry, 33, 1163–1170.

    CAS  Google Scholar 

  • Degens, B., and Sparling, G., 1996. Changes in aggregation do not correspond with changes in labile organic C fractions in soil amended with C-14-glucose. Soil Biology and Biochemistry, 28, 453–462.

    CAS  Google Scholar 

  • Denef, K., Six, J., Bossuyt, H., Frey, S., Elliott, E., Merckx, R., and Paustian, K., 2001. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology and Biochemistry, 33, 1599–1611.

    CAS  Google Scholar 

  • Deng, S. P., and Tabatabai, M. A., 1996. Effect of tillage and residue management on enzyme activities in soils 1. Amidohydrolases. Biology and Fertility of Soils, 22, 202–207.

    CAS  Google Scholar 

  • Falchini, L., Naumova, N., Kuikman, P. J., Bloem, J., and Nannipieri, P., 2003. CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biology and Biochemistry, 35, 775–782.

    CAS  Google Scholar 

  • Fontaine, S., Bardoux, G., Abbadie, L., and Mariotti, A., 2004. Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314–320.

    Google Scholar 

  • Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., and Rumpel, C., 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277–280.

    CAS  PubMed  Google Scholar 

  • Fontaine, S., Mariotti, A., and Abbadie, L., 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry, 35, 837–843.

    CAS  Google Scholar 

  • Gioacchini, P., Nastri, A., Marzadori, C., Giovannini, C., Antisari, L. V., and Gessa, C., 2002. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biology and Fertility of Soils, 36, 129–135.

    CAS  Google Scholar 

  • Gray, E. J., and Smith, D. L., 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37, 395–412.

    CAS  Google Scholar 

  • Guggenberger, G., Elliott, E. T., Frey, S. D., Six, J., and Paustian, K., 1999. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch. Soil Biology and Biochemistry, 31, 407–419.

    CAS  Google Scholar 

  • Hamer, U., and Marschner, B., 2005. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biology and Biochemistry, 37, 445–454.

    CAS  Google Scholar 

  • Hopkins, D. W., Sparrow, A. D., Elberling, B., Gregorich, E. G., Novis, P. M., Greenfield, L. G., and Tilston, E. L., 2006. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry, 38, 3130–3140.

    CAS  Google Scholar 

  • Jenkinson, D. S., Fox, R. H., and Rayner, J. H., 1985. Interactions between fertilizer nitrogen and soil nitrogen - the so-called ‘priming’ effect. Journal of Soil Science, 36, 425–444.

    CAS  Google Scholar 

  • Kandeler, E., Palli, S., Stemmer, M., and Gerzabek, M. H., 1999. Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 31, 1253–1264.

    CAS  Google Scholar 

  • Kuzyakov, Y., 2002. Review: Factors affecting rhizosphere priming effects. Journal of Soil Science and Plant Nutrition, 165, 382–396.

    CAS  Google Scholar 

  • Kuzyakov, Y., and Bol, R., 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology and Biochemistry, 38, 747–758.

    CAS  Google Scholar 

  • Kuzyakov, Y., Friedel, J. K., and Stahr, K., 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32, 1485–1498.

    CAS  Google Scholar 

  • Kuzyakov, Y., Shevtzova, E., and Pustovoytov, K., 2006. Carbonate re-crystallization in soil revealed by 14C labeling: Experiment, model and significance for paleo-environmental reconstructions. Geoderma 131, 45–58.

    CAS  Google Scholar 

  • Kuzyakov, Y., Hill, P. W., and Jones, D. L., 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant and Soil, 290, 293–305.

    CAS  Google Scholar 

  • Lazazzera, B. A., 2000. Quorum sensing and starvation: signals for entry into stationary phase. Current Opinion in Microbiology, 3, 177–182.

    CAS  PubMed  Google Scholar 

  • Liljeroth, E., Kuikman, P., and Vanveen, J. A., 1994. Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic-matter at different soil-nitrogen levels. Plant and Soil, 161, 233–240.

    Google Scholar 

  • Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F., and Handelsman, J., 2008. Rules of engagement: Interspecies interactions that regulate microbial communities. Annual Review in Microbiology, 62, 375–401.

    CAS  Google Scholar 

  • Luna-Guido, M. L., Beltran-Hernandez, R. I., and Dendooven, L., 2001. Dynamics of 14C-labelled glucose in alkaline saline soil. Soil Biology and Biochemistry, 33, 707–719.

    CAS  Google Scholar 

  • Martin-Olmedo, P., Rees, R. M., and Grace, J., 2002. The influence of plants grown under elevated CO2 and N fertilization on soil nitrogen dynamics. Global Change Biology, 8, 643–657.

    Google Scholar 

  • Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A., and Brookes, P. C., 2006. Soil microbial biomass activation by trace amounts of readily available substrate. Biology and Fertility of Soils, 42, 542–549.

    Google Scholar 

  • Niklaus, P. A., and Falloon, P., 2006. Estimating soil carbon sequestration under elevated CO2 by combining carbon isotope labelling with soil carbon cycle modelling. Global Change Biology, 12, 1909–1921.

    Google Scholar 

  • Ohm, H., Hamer, U., and Marschner, B., 2007. Priming effects in soil size fractions of a podzol Bs horizon after addition of fructose and alanine. Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahrung und Bodenkunde, 170, 551–559.

    CAS  Google Scholar 

  • Paul, E. A., and Clark, F. E., 1989. Soil Microbiology and Biochemistry. Academic Press ed., San Diego.

    Google Scholar 

  • Perelo, L. W., and Munch, J. C., 2005. Microbial immobilisation and turnover of C-13 labelled substrates in two arable soils under field and laboratory conditions. Soil Biology and Biochemistry, 37, 2263–2272.

    CAS  Google Scholar 

  • Raffa, R. B., Iannuzzo, J. R., Levine, D. R., Saeid, K. K., Schwartz, R. C., Sucic, N. T., Terleckyj O. D., and Young, J. M., 2005. Bacterial communication (“Quorum Sensing”) via ligands and receptors: A novel pharmacologic Target for the design of antibiotic drugs. Journal of Pharmacology and Experimental Therapeutics, 312, 417–423.

    CAS  PubMed  Google Scholar 

  • Schimel, J. P., and Weintraub, M. N., 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35, 549–563.

    CAS  Google Scholar 

  • Schneckenberger, K., Demin, D., Stahr, K., and Kuzyakov, Y., 2008. Microbial utilization and mineralization of [14C]glucose added in six orders of concentration to soil. Soil Biology and Biochemistry, 40, 1981–1988.

    CAS  Google Scholar 

  • Shen, J., and Bartha, R., 1997. Priming effect of glucose polymers in soil-based biodegradation tests. Soil Biology and Biochemistry, 29, 1195–1198.

    CAS  Google Scholar 

  • Six, J., and Jastrow, J., 2002. Organic Matter Turnover, Marcel Dekker, New York.

    Google Scholar 

  • Skujins, J. J., 1976. Extracellular enzymes in soil. CRC Critical Reviews in Microbiology, 4, 383–421.

    CAS  PubMed  Google Scholar 

  • Van Ginkel, J. H., Gorissen, A., and vanVeen, J. A., 1997. Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant and Soil, 188, 299–308.

    CAS  Google Scholar 

  • Wang, Y. J., and Leadbetter, J. R., 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Applied and Environmental Microbiology, 71, 1291–1299.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waters, C. M., and Bassler, B. L., 2005. Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.

    CAS  PubMed  Google Scholar 

  • Wu, J., Brookes, P. C., and Jenkinson, D. S., 1993. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biology and Biochemistry, 25, 1435–1441.

    CAS  Google Scholar 

  • Zyakun, A. M., and Dilly, O., 2005. Use of carbon isotope composition for characterization of microbial activity in arable soils. Applied Biochemistry and Microbiology, 41, 512–520.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia Blagodatskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Blagodatskaya, E., Kuzyakov, Y. (2011). Priming Effects in Relation to Soil Conditions – Mechanisms. In: Gliński, J., Horabik, J., Lipiec, J. (eds) Encyclopedia of Agrophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_128

Download citation

Publish with us

Policies and ethics