Skip to main content

Possible Mechanisms of ω-3 PUFA Anti-tumour Action

  • Chapter
  • First Online:
Dietary Omega-3 Polyunsaturated Fatty Acids and Cancer

Part of the book series: Diet and Cancer ((DICA,volume 1))

Abstract

Cancer is a disease characterized by an imbalance between cell division and cell death. Although the molecular mechanisms which account for the biological effects of the ω-3 long chain polyunsaturated fatty acids (ω-3 PUFAs) are not completely understood, there is considerable evidence from animal tumours and human cell lines that providing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) will both increase apoptotic and other death pathways and decrease cell growth. ω-3 PUFAs appear to mediate these beneficial effects by affecting the expression and/or function of the lipids, proteins, and genes that regulate these processes. The current evidence supports a hypothesis that these anti-tumour effects are initiated by the ability of DHA and EPA to alter the lipid environment of the cell and in doing so modulate receptors, proteins, and lipid-derived signals originating from cell membranes. The evidence for the possible mechanisms for the beneficial effects of ω-3 PUFAs on tumour cell death and/or proliferation is reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PUFA:

Polyunsaturated fatty acids

AA:

Arachidonic acid

ALA:

Alpha linolenic acid

AOM:

Azoxymethane

Apaf-1:

Apoptotic peptidase activating factor 1

Bid:

Bcl-2 interacting domain

CDK:

Cyclin-dependent kinase

CDKI:

CDK inhibitors

COX-1 and -2:

Cyclooxygenase 1 and 2

DAG:

Diacylglycerol

DHA:

Docosahexaenoic acid

DISC:

Death-inducing signalling complex

DR:

Death receptors

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EPA:

Eicosapentaenoic acid

FLIP:

FLICE-inhibitory protein

GRB2:

Growth factor receptor-bound protein

IAP:

Inhibitor of apoptosis proteins

IGF:

Insulin-like growth factor

IGFBP:

IGF-binding protein

IP3:

Inositol (1,4,5) triphosphate

IRS:

Insulin receptor substrates

LA:

Linoleic acid

LOX:

Lipoxygenase

MAPK:

Mitogen-activated protein kinase

MMPs:

Matrix metalloproteinases

NFκB:

Nuclear factor κB

PGE2 :

Prostaglandin E2

PI3K:

Phosphatidylinositol-3-kinase

PIP2:

Phosphatidylinositol (4,5) bisphosphate

PIP3:

Phosphatidylinositol (3,4,5) triphosphate

PKC:

Protein kinase C

PLA2 and C:

Phospholipase 2 and C

PLC:

Phospholipase C

PPAR:

Peroxisome proliferator-activated receptors

pRB:

Phosphorylated RB

RB:

Retinoblastoma protein

ROS:

Reactive oxygen species

SHC:

Src homology and collagen domain

SMase:

Sphingomyelinase

SREBP:

Sterol regulatory element-binding protein

TNF:

Tumour necrosis factor

TNFR1:

TNF receptor 1

TRAIL-R1 and 2:

TNF-related apoptosis-inducing ligand receptor 1 and 2

References

  1. Calviello G, Serini S, Piccioni E. N-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr Med Chem. 2007; 14:3059–3069.

    CAS  PubMed  Google Scholar 

  2. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004; 79:935–945.

    CAS  PubMed  Google Scholar 

  3. De CR, Massaro M. Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol. 2005; 206:103–116.

    Google Scholar 

  4. Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett. 2008; 269:363–377.

    CAS  PubMed  Google Scholar 

  5. Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids. 2008; 153:14–23.

    CAS  PubMed  Google Scholar 

  6. Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer. 2004; 4:592–603.

    CAS  PubMed  Google Scholar 

  7. Hengartner MO. The biochemistry of apoptosis. Nature. 2000; 407:770–776.

    CAS  PubMed  Google Scholar 

  8. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005; 118:265–267.

    CAS  PubMed  Google Scholar 

  9. Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med. 2003; 228:995–1003.

    CAS  Google Scholar 

  10. Green DR. Apoptotic pathways: ten minutes to dead. Cell. 2005; 121:671–674.

    CAS  PubMed  Google Scholar 

  11. Yamamoto D, Kiyozuka Y, Adachi Y, Takada H, Hioki K, Tsubura A. Synergistic action of apoptosis induced by eicosapentaenoic acid and TNP-470 on human breast cancer cells. Bst Cancer Res Treat. 1999; 55:149–160.

    CAS  Google Scholar 

  12. Tsujita-Kyutoku M, Yuri T, Danbara N, Senzaki H, Kiyozuka Y, Uehara N et al. Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action. Breast Cancer Res. 2004; 6:R291–R299.

    CAS  PubMed  Google Scholar 

  13. Schley PD, Jijon HB, Robinson LE, Field CJ. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 2005; 92:187–195.

    CAS  PubMed  Google Scholar 

  14. Hilakivi-Clarke L, Olivo SE, Shajahan A, Khan G, Zhu Y, Zwart A et al. Mechanisms mediating the effects of prepubertal (n-3) polyunsaturated fatty acid diet on breast cancer risk in rats. J Nutr. 2005; 135:2946S–2952S.

    CAS  PubMed  Google Scholar 

  15. Calviello G, Resci F, Serini S, Piccioni E, Toesca A, Boninsegna A et al. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis. 2007; 28:1202–1209.

    CAS  PubMed  Google Scholar 

  16. Narayanan BA, Narayanan NK, Reddy BS. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol. 2001; 19:1255–1262.

    CAS  PubMed  Google Scholar 

  17. Latham P, Lund EK, Brown JC, Johnson IT. Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo. Gut. 2001; 49:97–105.

    CAS  PubMed  Google Scholar 

  18. Chen ZY, Istfan NW. Docosahexaenoic acid is a potent inducer of apoptosis in HT-29 colon cancer cells. Prost Leuk Ess Fatty Acids. 2000; 63:301–308.

    CAS  Google Scholar 

  19. Hong MY, Lupton JR, Morris JS, Wang N, Carroll RJ, Davidson LA et al. Dietary fish oil reduces O6-methylguanine DNA adduct levels in rat colon in part by increasing apoptosis during tumor initiation. Cancer Epidemiol Biomarkers Prev. 2000; 9:819–826.

    CAS  PubMed  Google Scholar 

  20. Hong MY, Chapkin RS, Barhoumi R, Burghardt RC, Turner ND, Henderson CE et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002; 23:1919–1925.

    CAS  PubMed  Google Scholar 

  21. Serini S, Trombino S, Oliva F, Piccioni E, Monego G, Resci F et al. Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression. Apoptosis. 2008; 13:1172–1183.

    CAS  PubMed  Google Scholar 

  22. Mannini A, Kerstin N, Calorini L, Mugnai G, Ruggieri S. An enhanced apoptosis and a reduced angiogenesis are associated with the inhibition of lung colonisation in animals fed an n-3 polyunsaturated fatty acid-rich diet injected with a highly metastatic murine melanoma line. Br J Nutr. 2009; 101:688–693.

    CAS  PubMed  Google Scholar 

  23. Edwards IJ, Sun H, Hu Y, Berquin IM, O’Flaherty JT, Cline JM et al. In vivo and in vitro regulation of syndecan 1 in prostate cells by n-3 polyunsaturated fatty acids. J Biol Chem. 2008; 283:18441–18449.

    CAS  PubMed  Google Scholar 

  24. Narayanan NK, Narayanan BA, Reddy BS. A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors. Int J Oncol. 2005; 26:785–792.

    CAS  PubMed  Google Scholar 

  25. Heimli H, Finstad HS, Drevon CA. Necrosis and apoptosis in lymphoma cell lines exposed to eicosapentaenoic acid and antioxidants. Lipids. 2001; 36:613–621.

    CAS  PubMed  Google Scholar 

  26. Chiu LC, Wan JM. Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett. 1999; 145:17–27.

    CAS  PubMed  Google Scholar 

  27. Chiu LC, Wan JM, Ooi VE. Induction of apoptosis by dietary polyunsaturated fatty acids in human leukemic cells is not associated with DNA fragmentation. Int J Oncol. 2000; 17:789–796.

    CAS  PubMed  Google Scholar 

  28. Calviello G, Palozza P, Piccioni E, Maggiano N, Frattucci A, Franceschelli P et al. Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer. 1998; 75:699–705.

    CAS  PubMed  Google Scholar 

  29. Zhang W, Long Y, Zhang J, Wang C. Modulatory effects of EPA and DHA on proliferation and apoptosis of pancreatic cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2007; 27:547–550.

    PubMed  Google Scholar 

  30. Hawkins RA, Sangster K, Arends MJ. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol. 1998; 185:61–70.

    CAS  PubMed  Google Scholar 

  31. Lai PBS, Ross JA, Fearon KCH, Anderson JD, Carter DC. Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br J Cancer. 1996; 74:1375–1383.

    CAS  PubMed  Google Scholar 

  32. Merendino N, Loppi B, D’Aquino M, Molinari R, Pessina G, Romano C et al. Docosahexaenoic acid induces apoptosis in the human PaCa-44 pancreatic cancer cell line by active reduced glutathione extrusion and lipid peroxidation. Nutr Cancer. 2005; 52:225–233.

    CAS  PubMed  Google Scholar 

  33. Colquhoun A. Induction of apoptosis by polyunsaturated fatty acids and its relationship to fatty acid inhibition of carnitine palmitoyltransferase I activity in Hep2 cells. Biochem Mol Biol Int. 1998; 45:331–336.

    CAS  PubMed  Google Scholar 

  34. Serini S, Piccioni E, Merendino N, Calviello G. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis. 2009; 14:135–152.

    CAS  PubMed  Google Scholar 

  35. Cheng J, Ogawa K, Kuriki K, Yokoyama Y, Kamiya T, Seno K et al. Increased intake of n-3 polyunsaturated fatty acids elevates the level of apoptosis in the normal sigmoid colon of patients polypectomized for adenomas/tumors. Cancer Lett. 2003; 193:17–24.

    CAS  PubMed  Google Scholar 

  36. Courtney ED, Matthews S, Finlayson C, Di PD, Belluzzi A, Roda E et al. Eicosapentaenoic acid (EPA) reduces crypt cell proliferation and increases apoptosis in normal colonic mucosa in subjects with a history of colorectal adenomas. Int J Colorectal Dis. 2007; 22:765–776.

    CAS  PubMed  Google Scholar 

  37. Pfrommer CA, Erl W, Weber PC. Docosahexaenoic acid induces ciap1 mRNA and protects human endothelial cells from stress-induced apoptosis. Am J Physiol Heart Circ Physiol. 2006; 290:H2178–H2186.

    CAS  PubMed  Google Scholar 

  38. Kim HJ, Vosseler CA, Weber PC, Erl W. Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells. J Cell Physiol. 2005; 204:881–888.

    CAS  PubMed  Google Scholar 

  39. Siddiqui RA, Shaikh SR, Sech LA, Yount HR, Stillwell W, Zaloga GP. Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini Rev Med Chem. 2004; 4:859–871.

    CAS  PubMed  Google Scholar 

  40. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006; 25:4798–4811.

    CAS  PubMed  Google Scholar 

  41. Carpinteiro A, Dumitru C, Schenck M, Gulbins E. Ceramide-induced cell death in malignant cells. Cancer Lett. 2008; 264:1–10.

    CAS  PubMed  Google Scholar 

  42. Saelens X, Festjens N, Vande WL, van GM, Van LG, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004; 23:2861–2874.

    CAS  PubMed  Google Scholar 

  43. Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene. 2003; 22:8543–8567.

    CAS  PubMed  Google Scholar 

  44. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009; 124:511–515.

    CAS  PubMed  Google Scholar 

  45. Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell. 2003; 3:17–22.

    CAS  PubMed  Google Scholar 

  46. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004; 4:604–616.

    CAS  PubMed  Google Scholar 

  47. Debatin KM, Stahnke K, Fulda S. Apoptosis in hematological disorders. Semin Cancer Biol. 2003; 13:149–158.

    CAS  PubMed  Google Scholar 

  48. Roth W, Isenmann S, Nakamura M, Platten M, Wick W, Kleihues P et al. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res. 2001; 61:2759–2765.

    CAS  PubMed  Google Scholar 

  49. Friesen C, Fulda S, Debatin KM. Deficient activation of the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia. 1997; 11:1833–1841.

    CAS  PubMed  Google Scholar 

  50. Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem. 1998; 273:33942–33948.

    CAS  PubMed  Google Scholar 

  51. Biondo PD, Brindley DN, Sawyer MB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem. 2008; 19:787–796.

    CAS  PubMed  Google Scholar 

  52. Sauer LA, Blask DE, Dauchy RT. Dietary factors and growth and metabolism in experimental tumors. J Nutr Biochem. 2007; 18:637–649.

    CAS  PubMed  Google Scholar 

  53. Clandinin MT, Cheema S, Field CJ, Garg ML, Venkatraman J, Clandinin TR. Dietary fat: exogenous determination of membrane structure and cell function. FASEB J. 1991; 5:2761–2769.

    CAS  PubMed  Google Scholar 

  54. Robinson LE, Clandinin MT, Field CJ. The role of dietary long-chain n-3 fatty acids in anti-cancer immune defense and R3230AC mammary tumor growth in rats: influence of diet fat composition. Breast Cancer Res Treat. 2002; 73:145–160.

    Google Scholar 

  55. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cell in nude mice. J Natl Cancer Inst. 1995; 87:587–592.

    CAS  PubMed  Google Scholar 

  56. Chapkin RS, Hong MY, Fan YY, Davidson LA, Sanders LM, Henderson CE et al. Dietary n-3 PUFA alter colonocyte mitochondrial membrane composition and function. Lipids. 2002; 37:193–199.

    CAS  PubMed  Google Scholar 

  57. Ng Y, Barhoumi R, Tjalkens RB, Fan YY, Kolar S, Wang N et al. The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis. 2005; 26:1914–1921.

    CAS  PubMed  Google Scholar 

  58. Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr. 2007; 137:548–553.

    CAS  PubMed  Google Scholar 

  59. Finstad HS, Dyrendal H, Myhrstad MC, Heimli H, Drevon CA. Uptake and activation of eicosapentaenoic acid are related to accumulation of triacylglycerol in Ramos cells dying from apoptosis. J Lipid Res. 2000; 41:554–563.

    CAS  PubMed  Google Scholar 

  60. Stillwell W, Jenski LJ, Crump FT, Ehringer W. Effect of docosahexaenoic acid on mouse mitochondrial membrane properties. Lipids. 1997; 32:497–506.

    CAS  PubMed  Google Scholar 

  61. Ehringer W, Belcher D, Wassall SR, Stillwell W. A comparison of the effects of linolenic (18:3 omega 3) and docosahexaenoic (22:6 omega 3) acids on phospholipid bilayers. Chem Phys Lipids. 1990; 54:79–88.

    CAS  PubMed  Google Scholar 

  62. Ma DW, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR et al. N-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J Nutr Biochem. 2004; 15:700–706.

    CAS  PubMed  Google Scholar 

  63. Shaikh SR, Dumaual AC, Jenski LJ, Stillwell W. Lipid phase separation in phospholipid bilayers and monolayers modeling the plasma membrane. Biochim Biophys Acta. 2001; 1512:317–328.

    CAS  PubMed  Google Scholar 

  64. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993; 57(suppl):715S–725S.

    CAS  PubMed  Google Scholar 

  65. Das UN. Essential fatty acids, lipid peroxidation and apoptosis. Prost Leuk Ess Fatty Acids. 1999; 61:157–163.

    CAS  Google Scholar 

  66. Nomura K, Imai H, Koumura T, Arai M, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem. 1999; 274:29294–29302.

    CAS  PubMed  Google Scholar 

  67. Wang TG, Gotoh Y, Jennings MH, Rhoads CA, Aw TY. Lipid hydroperoxide-induced apoptosis in human colonic CaCo-2 cells is associated with an early loss of cellular redox balance. FASEB J. 2000; 14:1567–1576.

    CAS  PubMed  Google Scholar 

  68. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000; 103:239–252.

    CAS  PubMed  Google Scholar 

  69. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002; 2:301–310.

    CAS  PubMed  Google Scholar 

  70. Gonzalez MJ, Schemmel RA, Dugan LJr, Gray JI, Welsch CW. Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids. 1993; 28:827–832.

    CAS  PubMed  Google Scholar 

  71. Masotti L, Casali E, Galeotti T. Lipid peroxidation in tumour cells. Free Rad Biol Med. 1988; 4:377–386.

    CAS  PubMed  Google Scholar 

  72. Maziere C, Conte MA, Degonville J, Ali D, Maziere JC. Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFkappaB. Biochem Biophys Res Commun. 1999; 265:116–122.

    CAS  PubMed  Google Scholar 

  73. Dommels YE, Haring MM, Keestra NG, Alink GM, van Bladeren PJ, van OB. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE(2) synthesis and cytotoxicity in human colorectal carcinoma cell lines. Carcinogenesis. 2003; 24:385–392.

    CAS  PubMed  Google Scholar 

  74. Dupertuis YM, Meguid MM, Pichard C. Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2007; 10:427–432.

    CAS  PubMed  Google Scholar 

  75. Ding WQ, Lind SE. Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity. Mol Cancer Ther. 2007; 6:1467–1474.

    CAS  PubMed  Google Scholar 

  76. Begin ME, Ells G, Horrobin DF. Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst. 1988; 80:188–194.

    CAS  PubMed  Google Scholar 

  77. Chajes V, Sattler W, Stranzl A, Kostner GM. Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Bst Cancer Res Treat. 1995; 34:199–212.

    CAS  Google Scholar 

  78. Cognault S, Jourdan ML, Germain E, Pitavy R, Morel E, Durand G et al. Effect of an αalinolenic acid-rich diet on rat mammary tumor growth depends on the dietary oxidative status. Nutr Cancer. 2000; 36:33–41.

    CAS  PubMed  Google Scholar 

  79. Hofmanova J, Vaculova A, Kozubik A. Polyunsaturated fatty acids sensitize human colon adenocarcinoma HT-29 cells to death receptor-mediated apoptosis. Cancer Lett. 2005; 218:33–41.

    CAS  PubMed  Google Scholar 

  80. Boudreau MD, Sohn KH, Rhee SH, Lee SW, Hunt JD, Hwang DH. Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res. 2001; 61:1386–1391.

    CAS  PubMed  Google Scholar 

  81. Watkins SM, Carter LC, German JB. Docosahexaenoic acid accumulates in cardiolipin and enhances HT-29 cell oxidant production. J Lipid Res. 1998; 39:1583–1588.

    CAS  PubMed  Google Scholar 

  82. Schlame M, Ren M. The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta. 2009; 1788:2080–2083.

    CAS  PubMed  Google Scholar 

  83. Jemmerson R, Liu J, Hausauer D, Lam KP, Mondino A, Nelson RD. A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles. Biochemistry. 1999; 38:3599–3609.

    CAS  PubMed  Google Scholar 

  84. Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY et al. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta. 2006; 1757:648–659.

    CAS  PubMed  Google Scholar 

  85. Fisher M, Levine PH, Weiner BH, Johnson MH, Doyle EM, Ellis PA et al. Dietary n-3 fatty acid supplementation reduces superoxide production and chemiluminescence in a monocyte-enriched preparation of leukocytes. Am J Clin Nutr. 1990; 51:804–808.

    CAS  PubMed  Google Scholar 

  86. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002; 196:1025–1037.

    CAS  PubMed  Google Scholar 

  87. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998; 14:111–136.

    CAS  PubMed  Google Scholar 

  88. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000; 1:31–39.

    CAS  PubMed  Google Scholar 

  89. Fan YY, McMurray DN, Ly LH, Chapkin RS. Dietary (n-3) Polyunsaturated Fatty Acids Remodel Mouse T-Cell Lipid Rafts. J Nutr. 2003; 133:1913.

    CAS  PubMed  Google Scholar 

  90. Ma DW, Seo J, Davidson LA, Callaway ES, Fan YY, Lupton JR et al. N-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J. 2004; 18:1040–1042.

    CAS  PubMed  Google Scholar 

  91. Stulnig TM, Berger M, Sigmund T, Raederstorff D, Stockinger H, Waldhausl W. Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J Cell Biol. 1998; 143:637–644.

    CAS  PubMed  Google Scholar 

  92. Stulnig TM, Huber J, Leitinger N, Imre EM, Angelisova P, Nowotny P et al. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem. 2001; 276:37335–37340.

    CAS  PubMed  Google Scholar 

  93. Shaikh SR, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr. 2006; 84:1277–1289.

    CAS  PubMed  Google Scholar 

  94. Hulbert AJ, Turner N, Storlien LH, Else PL. Dietary fats and membrane function: implications for metabolism and disease. Biol Rev Camb Philos Soc. 2005; 80:155–169.

    CAS  PubMed  Google Scholar 

  95. Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of gene expression. Nutr Rev. 2004; 62:333–339.

    PubMed  Google Scholar 

  96. Deckelbaum RJ, Worgall TS, Seo T. N-3 fatty acids and gene expression. Am J Clin Nutr. 2006; 83:1520S–1525S.

    CAS  PubMed  Google Scholar 

  97. Hong MY, Chapkin RS, Davidson LA, Turner ND, Morris JS, Carroll RJ et al. Fish oil enhances targeted apoptosis during colon tumor initiation in part by downregulating Bcl-2. Nutr Cancer. 2003; 46:44–51.

    CAS  PubMed  Google Scholar 

  98. Berquin IM, Min Y, Wu R, Wu J, Perry D, Cline JM et al. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest. 2007; 117:1866–1875.

    CAS  PubMed  Google Scholar 

  99. Collett ED, Davidson LA, Fan YY, Lupton JR, Chapkin RS. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol. 2001; 280:C1066–C1075.

    CAS  PubMed  Google Scholar 

  100. Davidson LA, Lupton JR, Jiang YH, Chapkin RS. Carcinogen and dietary lipid regulate ras expression and localization in rat colon without affecting farnesylation kinetics. Carcinogenesis. 1999; 20:785–791.

    CAS  PubMed  Google Scholar 

  101. Heimli H, Giske C, Naderi S, Drevon CA, Hollung K. Eicosapentaenoic acid promotes apoptosis in Ramos cells via activation of caspase-3 and -9. Lipids. 2002; 37:797–802.

    CAS  PubMed  Google Scholar 

  102. Arita K, Kobuchi H, Utsumi T, Takehara Y, Akiyama J, Horton AA et al. Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids. Biochem Pharmacol. 2001; 62:821–828.

    CAS  PubMed  Google Scholar 

  103. Fuchs SY, Ougolkov AV, Spiegelman VS, Minamoto T. Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle. 2005; 4:1522–1539.

    CAS  PubMed  Google Scholar 

  104. Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene. 2003; 22:7070–7077.

    CAS  PubMed  Google Scholar 

  105. Kim WH, Kang KH, Kim MY, Choi KH. Induction of p53-independent p21 during ceramide-induced G1 arrest in human hepatocarcinoma cells. Biochem Cell Biol. 2000; 78:127–135.

    CAS  PubMed  Google Scholar 

  106. Hellin AC, Bentires-Alj M, Verlaet M, Benoit V, Gielen J, Bours V et al. Roles of nuclear factor-kappaB, p53, and p21/WAF1 in daunomycin-induced cell cycle arrest and apoptosis. J Pharmacol Exp Ther. 2000; 295:870–878.

    CAS  PubMed  Google Scholar 

  107. Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K et al. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer. 2005; 117:340–348.

    CAS  PubMed  Google Scholar 

  108. Siddiqui RA, Jenski LJ, Harvey KA, Wiesehan JD, Stillwell W, Zaloga GP. Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem J. 2003; 371:621–629.

    CAS  PubMed  Google Scholar 

  109. Fowler KH, McMurray DN, Fan Y-Y, Aukema HM, Chapkin RS. Purified dietary n-3 polyunsaturated fatty acids alter diacylglycerol mass and molecular species composition in concanavalin A-stimulated murine splenocytes. Biochim Biophys Acta. 1993; 1210:89–96.

    CAS  PubMed  Google Scholar 

  110. Jolly CA, Jiang Y-H, Chapkin RS, McMurray DN. Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J Nutr. 1997; 127:37–43.

    CAS  PubMed  Google Scholar 

  111. McMurray DN, Jolly CA, Chapkin RS. Effects of dietary n-3 fatty acids on T cell activation and T cell receptor-mediated signaling in a murine model. J Infect Dis. 2000; 182 Suppl 1:S103–S107.

    CAS  PubMed  Google Scholar 

  112. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001; 294:1871–1875.

    CAS  PubMed  Google Scholar 

  113. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987; 237:1171–1176.

    CAS  PubMed  Google Scholar 

  114. Sheng H, Shao J, Morrow JD, Beauchamp RD, Dubois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998; 58:362–366.

    CAS  PubMed  Google Scholar 

  115. Chapkin RS, Akoh CC, Miller CC. Influence of dietary n-3 fatty acids on macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. J Lipid Res. 1991; 32:1205–1213.

    CAS  PubMed  Google Scholar 

  116. Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003; 126:1–27.

    CAS  PubMed  Google Scholar 

  117. Lands WE. Biochemistry and physiology of n-3 fatty acids. FASEB J. 1992; 6:2530–2536.

    CAS  PubMed  Google Scholar 

  118. Trifan OC, Hla T. Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med. 2003; 7:207–222.

    CAS  PubMed  Google Scholar 

  119. Hamid R, Singh J, Reddy BS, Cohen LA. Inhibition by dietary menhaden oil of cyclooxygenase-1 and -2 in N-nitrosomethylurea-induced rat mammary tumors. Int J Oncol. 1999; 14:523–528.

    CAS  PubMed  Google Scholar 

  120. Narayanan BA, Narayanan NK, Desai D, Pittman B, Reddy BS. Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis. 2004; 25:2443–2449.

    CAS  PubMed  Google Scholar 

  121. Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science. 1999; 284:757–760.

    CAS  PubMed  Google Scholar 

  122. Yaqoob P. Lipids and the immune response: from molecular mechanisms to clinical applications. Curr Opin Clin Nutr Metab Care. 2003; 6:133–150.

    CAS  PubMed  Google Scholar 

  123. Kliewer SA, Willson TM. The nuclear receptor PPARγ – bigger than fat. Curr Opin Genet Dev. 1998; 8:576–581.

    CAS  PubMed  Google Scholar 

  124. Hostetler HA, Petrescu AD, Kier AB, Schroeder F. Peroxisome proliferator-activated receptor alpha interacts with high affinity and is conformationally responsive to endogenous ligands. J Biol Chem. 2005; 280:18667–18682.

    CAS  PubMed  Google Scholar 

  125. Fan YY, Spencer TE, Wang N, Moyer MP, Chapkin RS. Chemopreventive n-3 fatty acids activate RXRalpha in colonocytes. Carcinogenesis. 2003; 24:1541–1548.

    CAS  PubMed  Google Scholar 

  126. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002; 14:381–395.

    CAS  PubMed  Google Scholar 

  127. Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 2003; 63:972–979.

    CAS  PubMed  Google Scholar 

  128. Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L et al. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem. 2003; 278:37041–37051.

    CAS  PubMed  Google Scholar 

  129. Shaikh IA, Brown I, Schofield AC, Wahle KW, Heys SD. Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-kappaB pathway. Prostate. 2008; 68:1635–1646.

    CAS  PubMed  Google Scholar 

  130. Lo CJ, Chiu KC, Fu M, Lo R, Helton S. Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity. J Surg Res. 1999; 82:216–221.

    CAS  PubMed  Google Scholar 

  131. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003; 21:2787–2799.

    CAS  PubMed  Google Scholar 

  132. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J. 2000; 19:3159–3167.

    CAS  PubMed  Google Scholar 

  133. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001; 2:127–137.

    CAS  PubMed  Google Scholar 

  134. Kawamoto T, Sato JD, Le A, Polikoff J, Sato GH, Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA. 1983; 80:1337–1341.

    CAS  PubMed  Google Scholar 

  135. Iihara K, Shiozaki H, Tahara H, Kobayashi K, Inoue M, Tamura S et al. Prognostic significance of transforming growth factor-alpha in human esophageal carcinoma. Implication for the autocrine proliferation. Cancer. 1993; 71:2902–2909.

    CAS  PubMed  Google Scholar 

  136. Yasui W, Sumiyoshi H, Hata J, Kameda T, Ochiai A, Ito H et al. Expression of epidermal growth factor receptor in human gastric and colonic carcinomas. Cancer Res. 1988; 48:137–141.

    CAS  PubMed  Google Scholar 

  137. Magnusson I, Rosen AV, Nilsson R, Macias A, Perez R, Skoog L. Receptors for epidermal growth factor and sex steroid hormones in human colorectal carcinomas. Anticancer Res. 1989; 9:299–301.

    CAS  PubMed  Google Scholar 

  138. Barton CM, Hall PA, Hughes CM, Gullick WJ, Lemoine NR. Transforming growth factor alpha and epidermal growth factor in human pancreatic cancer. J Pathol. 1991; 163:111–116.

    CAS  PubMed  Google Scholar 

  139. Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P et al. Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol. 2004; 15:28–32.

    CAS  PubMed  Google Scholar 

  140. Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem. 1997; 272:30429–30438.

    CAS  PubMed  Google Scholar 

  141. Yamabhai M, Anderson RG. Second cysteine-rich region of epidermal growth factor receptor contains targeting information for caveolae/rafts. J Biol Chem. 2002; 277:24843–24846.

    CAS  PubMed  Google Scholar 

  142. Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol. 1999; 1:98–105.

    CAS  PubMed  Google Scholar 

  143. Puri C, Tosoni D, Comai R, Rabellino A, Segat D, Caneva F et al. Relationships between EGFR signaling-competent and endocytosis-competent membrane microdomains. Mol Biol Cell. 2005; 16:2704–2718.

    CAS  PubMed  Google Scholar 

  144. Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell. 1998; 94:625–634.

    CAS  PubMed  Google Scholar 

  145. Shih C, Padhy LC, Murray M, Weinberg RA. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981; 290:261–264.

    CAS  PubMed  Google Scholar 

  146. Natali PG, Nicotra MR, Bigotti A, Venturo I, Slamon DJ, Fendly BM et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer. 1990; 45:457–461.

    CAS  PubMed  Google Scholar 

  147. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989; 244:707–712.

    CAS  PubMed  Google Scholar 

  148. Yonemura Y, Ninomiya I, Yamaguchi A, Fushida S, Kimura H, Ohoyama S et al. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res. 1991; 51:1034–1038.

    CAS  PubMed  Google Scholar 

  149. Venter DJ, Tuzi NL, Kumar S, Gullick WJ. Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: immunohistological assessment correlates with gene amplification. Lancet. 1987; 2:69–72.

    CAS  PubMed  Google Scholar 

  150. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005; 5:341–354.

    CAS  PubMed  Google Scholar 

  151. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987; 235:177–182.

    CAS  PubMed  Google Scholar 

  152. Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. J Nutr. 2007; 137:548–553.

    CAS  PubMed  Google Scholar 

  153. Menendez JA, Ropero S, Lupu R, Colomer R. Dietary fatty acids regulate the activation status of Her-2/neu (c-erbB-2) oncogene in breast cancer cells. Ann Oncol. 2004; 15:1719–1721.

    CAS  PubMed  Google Scholar 

  154. Menendez JA, Lupu R, Colomer R. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev. 2005; 14:263–270.

    CAS  PubMed  Google Scholar 

  155. Myal Y, Shiu RP, Bhaumick B, Bala M. Receptor binding and growth-promoting activity of insulin-like growth factors in human breast cancer cells (T-47D) in culture. Cancer Res. 1984; 44:5486–5490.

    CAS  PubMed  Google Scholar 

  156. Law JH, Habibi G, Hu K, Masoudi H, Wang MY, Stratford AL et al. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 2008; 68:10238–10246.

    CAS  PubMed  Google Scholar 

  157. Fuchs CS, Goldberg RM, Sargent DJ, Meyerhardt JA, Wolpin BM, Green EM et al. Plasma insulin-like growth factors, insulin-like binding protein-3, and outcome in metastatic colorectal cancer: results from intergroup trial N9741. Clin Cancer Res. 2008; 14:8263–8269.

    CAS  PubMed  Google Scholar 

  158. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985; 40:747–758.

    CAS  PubMed  Google Scholar 

  159. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985; 313:756–761.

    CAS  PubMed  Google Scholar 

  160. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. Embo J. 1986; 5:2503–2512.

    CAS  PubMed  Google Scholar 

  161. Belfiore A. The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des. 2007; 13:671–686.

    CAS  PubMed  Google Scholar 

  162. Benyoucef S, Surinya KH, Hadaschik D, Siddle K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J. 2007; 403:603–613.

    CAS  PubMed  Google Scholar 

  163. De Meyts P. Insulin and its receptor: structure, function and evolution. Bioessays. 2004; 26:1351–1362.

    PubMed  Google Scholar 

  164. De Meyts P, Palsgaard J, Sajid W, Theede AM, Aladdin H. Structural biology of insulin and IGF-1 receptors. Novartis Found Symp. 2004; 262:160–171.

    PubMed  Google Scholar 

  165. Hernandez-Sanchez C, Blakesley V, Kalebic T, Helman L, LeRoith D. The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem. 1995; 270:29176–29181.

    CAS  PubMed  Google Scholar 

  166. Probst-Hensch NM, Wang H, Goh VH, Seow A, Lee HP, Yu MC. Determinants of circulating insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations in a cohort of Singapore men and women. Cancer Epidemiol Biomarkers Prev. 2003; 12:739–746.

    CAS  PubMed  Google Scholar 

  167. Bhathena SJ, Berlin E, Judd JT, Kim YC, Law JS, Bhagavan HN et al. Effects of omega 3 fatty acids and vitamin E on hormones involved in carbohydrate and lipid metabolism in men. Am J Clin Nutr. 1991; 54:684–688.

    CAS  PubMed  Google Scholar 

  168. Ghoshal AK, Xu Z, Wood GA, Archer MC. Induction of hepatic insulin-like growth factor binding protein-1 (IGFBP-1) in rats by dietary n-6 polyunsaturated fatty acids. Proc Soc Exp Biol Med. 2000; 225:128–135.

    CAS  PubMed  Google Scholar 

  169. Kondoh N, Wakatsuki T, Ryo A, Hada A, Aihara T, Horiuchi S et al. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res. 1999; 59:4990–4996.

    CAS  PubMed  Google Scholar 

  170. Chen J, Stavro PM, Thompson LU. Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr Cancer. 2002; 43:187–192.

    CAS  PubMed  Google Scholar 

  171. Kun Z, Haiyun Z, Meng W, Li N, Li Y, Li J. Dietary omega-3 polyunsaturated fatty acids can inhibit expression of granzyme B, perforin, and cation-independent mannose 6-phosphate/insulin-like growth factor receptor in rat model of small bowel transplant chronic rejection. JPEN J Parenter Enteral Nutr. 2008; 32:12–17.

    PubMed  Google Scholar 

  172. Leake R. The cell cycle and regulation of cancer cell growth. Ann NY Acad Sci. 1996; 784:252–262.

    CAS  PubMed  Google Scholar 

  173. Dictor M, Ehinger M, Mertens F, Akervall J, Wennerberg J. Abnormal cell cycle regulation in malignancy. Am J Clin Path. 1999; 112:S40–S52.

    CAS  PubMed  Google Scholar 

  174. Albino AP, Juan G, Traganos F, Reinhart L, Connolly J, Rose DP et al. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation. Cancer Res. 2000; 60:4139–4145.

    CAS  PubMed  Google Scholar 

  175. Khan NA, Nishimura K, Aires V, Yamashita T, Oaxaca-Castillo D, Kashiwagi K et al. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation. J Lipid Res. 2006; 47:2306–2313.

    CAS  PubMed  Google Scholar 

  176. Barascu A, Besson P, Le Floch O, Bougnoux P, Jourdan ML. CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells. Int J Biochem Cell Biol. 2006; 38:196–208.

    CAS  PubMed  Google Scholar 

  177. Zhang W, Long Y, Zhang J, Wang C. Modulatory effects of EPA and DHA on proliferation and apoptosis of pancreatic cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2007; 27:547–550.

    PubMed  Google Scholar 

  178. Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009; 10:276–286.

    CAS  PubMed  Google Scholar 

  179. Weinberg RA. The biology of cancer. New York, NY: Garland Science, Taylor & Francis Group, LLC, 2007.

    Google Scholar 

  180. Takahashi-Yanaga F, Sasaguri T. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. J Pharmacol Sci. 2009; 109:179–183.

    CAS  PubMed  Google Scholar 

  181. Calviello G, Resci F, Serini S, Piccioni E, Toesca A, Boninsegna A et al. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis. 2007; 28:1202–1209.

    CAS  PubMed  Google Scholar 

  182. Narayanan BA, Narayanan NK, Desai D, Pittman B, Reddy BS. Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis. 2004; 25:2443–2449.

    CAS  PubMed  Google Scholar 

  183. Lim K, Han C, Xu L, Isse K, Demetris AJ, Wu T. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res. 2008; 68:553–560.

    CAS  PubMed  Google Scholar 

  184. Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 2000; 60:5040–5044.

    CAS  PubMed  Google Scholar 

  185. Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006; 355:885–895.

    CAS  PubMed  Google Scholar 

  186. Habbel P, Weylandt KH, Lichopoj K, Nowak J, Purschke M, Wang JD et al. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells. World J Gastroenterol. 2009; 15:1079–1084.

    CAS  PubMed  Google Scholar 

  187. Denkins Y, Kempf D, Ferniz M, Nileshwar S, Marchetti D. Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J Lipid Res. 2005; 46:1278–1284.

    CAS  PubMed  Google Scholar 

  188. Escrich E, Moral R, Grau L, Costa I, Solanas M. Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol Nutr Food Res. 2007; 51:1279–1292.

    CAS  PubMed  Google Scholar 

  189. Slater TF, Cheeseman KH, Proudfoot K. Free radicals, lipid peroxidation and cancer. 1984; 27:293.

    Google Scholar 

  190. Cornwell DG, Huttner JJ, Milo GE, Panganamala RV, Sharma HM, Geer JC. Polyunsaturated fatty acids, vitamin E, and the proliferation of aortic smooth muscle cells. Lipids. 1979; 14:194–207.

    CAS  PubMed  Google Scholar 

  191. Huttner JJ, Gwebu ET, Panganamala RV, Milo GE, Cornwell DC, Sharma HM et al. Fatty acids and their prostaglandin derivatives: inhibitors of proliferation in aortic smooth muscle cells. Science. 1977; 197:289–291.

    CAS  PubMed  Google Scholar 

  192. Huttner JJ, Milo GE, Panganamala RV, Cornwell DG. Fatty acids and the selective alteration of in vitro proliferation in human fibroblast and guinea-pig smooth-muscle cells. In Vitro. 1978; 14:854–859.

    CAS  PubMed  Google Scholar 

  193. Maziere C, Conte MA, Degonville J, Ali D, Maziere JC. Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFkappaB. Biochem Biophys Res Commun. 1999; 265:116–122.

    CAS  PubMed  Google Scholar 

  194. Schonberg SA, Rudra PK, Noding R, Skorpen F, Bjerve KS, Krokan HE. Evidence that changes in Se-glutathione peroxidase levels affect the sensitivity of human tumour cell lines to n-3 fatty acids. Carcinogenesis. 1997; 18:1897–1904.

    CAS  PubMed  Google Scholar 

  195. Chamras H, Ardashian A, Heber D, Glaspy JA. Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. J Nutr Biochem. 2002; 13:711–716.

    CAS  PubMed  Google Scholar 

  196. Grammatikos SI, Subbaiah PV, Victor TA, Miller WM. Diverse effects of essential (n-6 and n-3) fatty acids on cultured cells. Cytotechnology. 1994; 15:31–50.

    CAS  PubMed  Google Scholar 

  197. Galli C, Marangoni F, Galella G. Modulation of lipid derived mediators by polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 1993; 48:51–55.

    CAS  PubMed  Google Scholar 

  198. Edwards IJ, O’Flaherty JT. Omega-3 Fatty Acids and PPARgamma in Cancer. PPAR Res. 2008; 2008:358052.

    PubMed  Google Scholar 

  199. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res. 2006; 45:120–159.

    CAS  PubMed  Google Scholar 

  200. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000; 405:421–424.

    CAS  PubMed  Google Scholar 

  201. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology. 2003; 144:2201–2207.

    CAS  PubMed  Google Scholar 

  202. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med. 1998; 4:1046–1052.

    CAS  PubMed  Google Scholar 

  203. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell. 1998; 1:465–470.

    CAS  PubMed  Google Scholar 

  204. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002; 53:409–435.

    CAS  PubMed  Google Scholar 

  205. Houseknecht KL, Cole BM, Steele PJ. Peroxisome proliferator-activated receptor gamma (PPARgamma) and its ligands: a review. Domest Anim Endocrinol. 2002; 22:1–23.

    CAS  PubMed  Google Scholar 

  206. Gonzalez-Periz A, Planaguma A, Gronert K, Miquel R, Lopez-Parra M, Titos E et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. Faseb J. 2006; 20:2537–2539.

    CAS  PubMed  Google Scholar 

  207. Bonofiglio D, Aquila S, Catalano S, Gabriele S, Belmonte M, Middea E et al. Peroxisome proliferator-activated receptor-gamma activates p53 gene promoter binding to the nuclear factor-kappaB sequence in human MCF7 breast cancer cells. Mol Endocrinol. 2006; 20:3083–3092.

    CAS  PubMed  Google Scholar 

  208. Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther. 2006; 5:430–437.

    CAS  PubMed  Google Scholar 

  209. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002; 109:1125–1131.

    CAS  PubMed  Google Scholar 

  210. Zhou RH, Yao M, Lee TS, Zhu Y, Martins-Green M, Shyy JY. Vascular endothelial growth factor activation of sterol regulatory element binding protein: a potential role in angiogenesis. Circ Res. 2004; 95:471–478.

    CAS  PubMed  Google Scholar 

  211. Field FJ, Born E, Murthy S, Mathur SN. Polyunsaturated fatty acids decrease the expression of sterol regulatory element-binding protein-1 in CaCo-2 cells: effect on fatty acid synthesis and triacylglycerol transport. Biochem J. 2002; 368:855–864.

    CAS  PubMed  Google Scholar 

  212. Schonberg SA, Lundemo AG, Fladvad T, Holmgren K, Bremseth H, Nilsen A et al. Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. Febs J. 2006; 273:2749–2765.

    PubMed  Google Scholar 

  213. Singh J, Hamid R, Reddy BS. Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer. Cancer Res. 1997; 57:253–258.

    CAS  PubMed  Google Scholar 

  214. Davidson LA, Lupton JR, Jiang YH, Chapkin RS. Carcinogen and dietary lipid regulate ras expression and localization in rat colon without affecting farnesylation kinetics. Carcinogenesis. 1999; 20:785–791.

    CAS  PubMed  Google Scholar 

  215. Collett ED, Davidson LA, Fan YY, Lupton JR, Chapkin RS. n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am J Physiol Cell Physiol. 2001; 280:C1066–C1075.

    CAS  PubMed  Google Scholar 

  216. Seo J, Barhoumi R, Johnson AE, Lupton JR, Chapkin RS. Docosahexaenoic acid selectively inhibits plasma membrane targeting of lipidated proteins. FASEB J. 2006; 20:770–772.

    CAS  PubMed  Google Scholar 

  217. Craven PA, DeRubertis FR. Alterations in protein kinase C in 1,2-dimethylhydrazine induced colonic carcinogenesis. Cancer Res. 1992; 52:2216–2221.

    CAS  PubMed  Google Scholar 

  218. Kahl-Rainer P, Sedivy R, Marian B. Protein kinase C tissue localization in human colonic tumors suggests a role for adenoma growth control. Gastroenterology. 1996; 110:1753–1759.

    CAS  PubMed  Google Scholar 

  219. Ma DW, Seo J, Davidson LA, Callaway ES, Fan YY, Lupton JR et al. n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. Faseb J. 2004; 18:1040–1042.

    CAS  PubMed  Google Scholar 

  220. Davidson LA, Brown RE, Chang WC, Morris JS, Wang N, Carroll RJ et al. Morphodensitometric analysis of protein kinase C beta(II) expression in rat colon: modulation by diet and relation to in situ cell proliferation and apoptosis. Carcinogenesis. 2000; 21:1513–1519.

    CAS  PubMed  Google Scholar 

  221. Murray NR, Weems C, Chen L, Leon J, Yu W, Davidson LA et al. Protein kinase C betaII and TGFbetaRII in omega-3 fatty acid-mediated inhibition of colon carcinogenesis. J Cell Biol. 2002; 157:915–920.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by a grant from the Canadian Institute for Health Research. The authors wish to acknowledge the editorial help of K. Ruby in the preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sawyer, M.B., Field, C.J. (2010). Possible Mechanisms of ω-3 PUFA Anti-tumour Action. In: Calviello, G., Serini, S. (eds) Dietary Omega-3 Polyunsaturated Fatty Acids and Cancer. Diet and Cancer, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3579-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3579-0_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3578-3

  • Online ISBN: 978-90-481-3579-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics