Skip to main content

Removal of Xenobiotic Compounds from Water and Wastewater by Advanced Oxidation Processes

  • Chapter
  • First Online:
Xenobiotics in the Urban Water Cycle

Abstract

Advanced oxidation processes (AOPs) constitute a family of redox technologies that have been involved in various environmental applications, including, amongst others, the treatment of municipal and industrial wastewater contaminated by various organic and inorganic compounds.

This chapter focuses on the science and engineering of water and wastewater treatment in relation to AOPs applications. The chapter gives a short but necessary description of the key AOPs employed in water treatment and then discusses process fundamentals, advantages and drawbacks. This is done providing recent paradigms from the literature on process integration aiming to improve degradation rates or separate pollutants, catalysts and chemicals prior to or after advanced oxidation.

The chapter includes also information on solar-driven applications (homogeneous and heterogeneous photocatalysis) as an excellent example of sustainable treatment technologies. This part discusses technological advances (development of non-concentrating collectors and scaling-up of photocatalytic reactors) and summarizes most of the recent research related to the degradation of water contaminants. The approach is exemplified through a combined solar photocatalysis and bio-treatment unit capable of destroying very persistent toxic compounds.

Finally, in this chapter, the use of AOPs in drinking water treatment is discussed with respect to both disinfection by-products control and micro-pollutants removal and compared to the efficiency of conventional treatment technologies.

All authors have contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewuyi, Y. G. (2005). Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environmental Science and Technology, 39, 3409-3420.

    Article  CAS  Google Scholar 

  • Agüera, A., Perez Estrada, L. A., Ferrer, I., Thurman, E. M., Malato, S., & Fernandez-Alba, A. R. (2005). Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of Mass Spectrometry, 40, 908-915.

    Article  Google Scholar 

  • Ajona, J. A., & Vidal, A. (2000). The use of CPC collectors for detoxification of contaminated water: Design, construction and preliminary results. Solar Energy, 68, 109-120.

    Article  CAS  Google Scholar 

  • Bahnemann, D. (2004). Photocatalytic water treatment: Solar energy applications. Solar Energy, 77, 445-459.

    Article  CAS  Google Scholar 

  • Balasubramanian, G., Dionysiou, D. D., Suidan, M. T., Baudin, I., & Laine, J. M. (2004). Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Applied Catalysis. B, Environmental, 47, 73-84.

    Article  CAS  Google Scholar 

  • Barth, J. A. C., Steidle, D., Kuntz, D., Gocht, T., Mouvet, C., von Tümpling, W., et al. (2007). Deposition, persistence and turnover of pollutants: first results from the EU project AquaTerra for selected river basins and aquifers. Science of the Total Environment, 376, 40-50.

    Article  CAS  Google Scholar 

  • Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2008). An overview of the application of Fenton oxidation to industrial wastewaters treatment. Journal of Chemical Technology and Biotechnology, 83, 1323-1338.

    Article  CAS  Google Scholar 

  • Bekbölet, M., & Özkösemen, G. (1996). A preliminary investigation on the photocatalytic degradation of a model humic acid. Water Science and Technology, 33(6), 189-194.

    Article  Google Scholar 

  • Bekbolet, M., Uyguner, C. S., Selcuk, H., Rizzo, L., Nikolaou, A. D., Meric, S., et al. (2005). Application of oxidative removal of NOM to drinking water and formation of disinfection by-products. Desalination, 176, 155-166.

    Article  CAS  Google Scholar 

  • Belgiorno, V., Rizzo, L., Fatta, D., Della Rocca, C., Lofrano, G., Nikolaou, A., et al. (2007). Review of endocrine disrupting-emerging compounds in urban wastewater: Occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination, 215, 166-176.

    Article  CAS  Google Scholar 

  • Beltran, F. J. (2003). Ozone reaction kinetics for water and wastewater systems. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Benner, J., Salhi, E., Ternes, T., & von Gunten, U. (2008). Ozonation of reverse osmosis concentrate: Kinetics and efficiency of betablocker oxidation. Water Research, 42, 3003-3012.

    Article  CAS  Google Scholar 

  • Berberidou, C., Poulios, I., Xekoukoulotakis, N. P., & Mantzavinos, D. (2007). Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis. B, Environmental, 74, 63-72.

    Article  CAS  Google Scholar 

  • Bhargava, S. K., Tardio, J., Prasad, J., Folger, K., Akolekar, D. B., & Grocott, S. C. (2006). Wet oxidation and catalytic wet oxidation. Industrial and Engineering Chemistry Research, 45, 1221-1258.

    Article  CAS  Google Scholar 

  • Blanco-Gálvez, J., & Malato-Rodríguez, S. (2003). Solar detoxification. France: UNESCO Publishing.

    Google Scholar 

  • Boroski, M., Rodrigues, A. C., Garcia, J. C., Gerola, A. P., Nozaki, J., & Hioka, N. (2008). The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories. Journal of Hazardous Material, 160, 135-141.

    Article  CAS  Google Scholar 

  • Bossmann, S. H., Oliveros, E., Göb, S., Siegwart, S., Dahlen, E. P., Payawan, L., Jr., et al. (1998). New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. Journal of Physical Chemistry, 102, 5542-5550.

    CAS  Google Scholar 

  • Bousselmi, L., Geissen, S. U., & Schroeder, H. (2004). Textile wastewater tratment and reuse by solar photocatalysis: Results from a pilot plant in Tunisia. Water Science and Technology, 49, 331-337.

    CAS  Google Scholar 

  • Calza, P., Pelizzetti, E., & Minero, C. (2005). The fate of organic nitrogen in photocatalysis: an overview. Journal of Applied Electrochemistry, 35, 665-673.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11-41.

    Article  Google Scholar 

  • Chen, W. R., Wu, C., Elovitz, M. S., Linden, K. G., & Suffet, I. H. (Mel). (2008). Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals. Water Research, 42, 137-144.

    Google Scholar 

  • Comninellis, C., Kapalka, A., Malato, S., Parsons, S., Poulios, I., & Mantzavinos, D. (2008). Advanced oxidation processes for water treatment: Advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 83, 769-776.

    Article  CAS  Google Scholar 

  • Dalrymple, O. K., Yeh, D. H., & Trotz, M. A. (2007). Removing pharmaceuticals and endocrine disrupting compounds from wastewater by photocatalysis. Journal of Chemical Technology and Biotechnology, 82, 121-134.

    Article  CAS  Google Scholar 

  • Dillert, R., Cassano, A. E., Goslich, R., & Bahnemann, D. (1999). Large scale studies in solar catalytic wastewater treatment. Catalysis Today, 54, 267-282.

    Article  CAS  Google Scholar 

  • Erdei, L., Arecrachakul, N., & Vigneswaran, S. (2008). A combined photocatalytic slurry reactor-immersed membrane module system for advanced wastewater treatment. Separation and Purification Technology, 62, 382-388.

    Article  CAS  Google Scholar 

  • Esplugas, S., Bila, D., Krause, L. G., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Material, 149, 631-642.

    Article  CAS  Google Scholar 

  • Garoma, T., Gurol, M. D., Osibodu, O., & Thotakura, L. (2008). Treatment of groundwater contaminated with gasoline components by an ozone/UV process. Chemosphere, 73, 825-831.

    Article  CAS  Google Scholar 

  • Geissen, S., Xi, W., Weidemeyer, A., Vogelpohl, A., Bousselmi, L., Ghrabi, A., et al. (2001). Comparison of suspended and fixed photocatalytic reactor systems. Water Science and Technology, 44, 245-249.

    CAS  Google Scholar 

  • Gibs, J., Stackelberg, P. E., Furlong, E. T., Meyer, M., Zaugg, S. T., & Lippincott, R. L. (2007). Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Science of the Total Environment, 373, 240-249.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8, 501-551.

    Article  CAS  Google Scholar 

  • Gomes de Moraes, S., Sanches Freire, R., & Duran, N. (2000). Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 40, 369-373.

    Article  Google Scholar 

  • Goslan, E. H., Gurses, F., Banks, J., & Parson, S. A. (2006). An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes. Chemosphere, 65, 1113-1119.

    Article  CAS  Google Scholar 

  • Goswami, D. Y. (1997). A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. Journal of Solar Energy Engineering, 119, 101-107.

    Article  CAS  Google Scholar 

  • Gottschalk, C., Libra, J. A., & Saupe, A. (2000). Ozonation of water and wastewater. Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  • Guzzella, L., Feretti, D., & Monarca, S. (2002). Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply. Water Research, 36, 4307-4318.

    Article  CAS  Google Scholar 

  • Guzzella, L., Pozzoni, F., & Giuliano, G. (2006). Herbicide contamination of surficial groundwater in Northern Italy. Environmental Pollution, 142, 344-353.

    Article  CAS  Google Scholar 

  • Haber, F., & Weiss, J. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society A, 134, 332-351.

    Article  Google Scholar 

  • Hidaka, H. (1996). Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies. Journal of Photochemistry and Photobiology A: Chemistry, 94, 191-203.

    Article  Google Scholar 

  • Hildebrandt, A., Guillamón, M., Lacorte, S., Tauler, R., & Barceló, D. (2008). Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research, 42, 3315-3326.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69-96.

    Article  CAS  Google Scholar 

  • Hua, W., Bennett, E. R., & Letcher, R. J. (2006). Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Research, 40, 2259-2266.

    Article  CAS  Google Scholar 

  • Huber, M. M., Canonica, S., Park, G., & von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science and Technology, 37, 1016-1024.

    Article  CAS  Google Scholar 

  • Iordache, I., Wilson, S., Lundanes, E., & Neculai, A. (2007). Comparison of Fenton and sono-Fenton bisphenol A degradation. Journal of Hazardous Materials, 142, 559-563.

    Article  Google Scholar 

  • Kagaya, S., Shimizu, K., Arai, R., & Hasegawa, K. (1999). Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride. Water Research, 33, 1753-1755.

    Article  CAS  Google Scholar 

  • Kaneko, M., & Okura, I. (eds). (2002). Photocatalysis: Science and technology. Berlin, Germany: Springer.

    Google Scholar 

  • Kitis, M., & Kaplan, S. S. (2007). Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere, 68, 1846-1853.

    Article  CAS  Google Scholar 

  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35, 402-417.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environmental Science and Technology, 36, 1202-1211.

    Article  CAS  Google Scholar 

  • Kosjek, T., & Heath, E. (2008). Applications of mass spectrometry to identifying pharmaceutical transformation products in water treatment. Trends in Analytical Chemistry, 27, 807-820.

    Article  CAS  Google Scholar 

  • Kulik, N., Trapido, M., Goi, A., Veressinina, Y., & Munter, R. (2008). Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere, 70, 1525-1531.

    Article  CAS  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93, 671-698.

    Article  CAS  Google Scholar 

  • Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124, 172-184.

    Article  CAS  Google Scholar 

  • Li, J., Mi, C., Li, J., Xu, Y., Jia, Z., & Li, M. (2008). The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis. Ultrasonics Sonochemistry, 15, 949-954.

    Article  CAS  Google Scholar 

  • Ma, J., & Graham, N. J. D. (1999). Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances. Water Research, 33, 785-793.

    Article  CAS  Google Scholar 

  • Ma, X. J., & Xia, H. L. (2009). Treatment of water-based printing ink wastewater by Fenton process combined with coagulation. Journal of Hazardous Materials, 162, 386-390.

    Article  CAS  Google Scholar 

  • Malato, S., Blanco, J., Alarcón, D. C., Maldonado, M. I., Fernández-Ibáñez, P., & Gernjak, W. (2007a). Photocatalytic decontamination and disinfection of water with solar collectors. Catalysis Today, 122, 137-149.

    Article  CAS  Google Scholar 

  • Malato, S., Blanco, J., Alarcón, D. C., Maldonado, M. I., Fernández-Ibáñez, P., & Gernjak, W. (2007b). Photocatalytic detoxification of water with solar energy. In Y. Goswami (Ed.), Advanced in solar energy, an annual review of research and development (pp. 130-168). Boulder, CO: American Solar Energy Society.

    Google Scholar 

  • Malato, S., Blanco, J., Vidal, A., Fernández, P., Cáceres, J., Trincado, P., et al. (2002). New large solar photocatalytic plant: Set-up and preliminary results. Chemosphere, 47, 235-240.

    Article  CAS  Google Scholar 

  • Mantzavinos, D., & Psillakis, E. (2004). Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology, 79, 431-454.

    Article  CAS  Google Scholar 

  • Martinez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews, 35, 1324-1340.

    Article  CAS  Google Scholar 

  • Mascolo, G., Ciannarella, R., Balest, L., & Lopez, A. (2008). Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. Journal of Hazardous Materials, 152, 1138-1145.

    Article  CAS  Google Scholar 

  • Mason, T. J., & Lorimer, J. P. (2002). Applied sonochemistry. Weinheim, Germany: Wiley-VCH.

    Book  Google Scholar 

  • Menapace, H. M., Diaz, N., & Weiss, S. (2008). Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation. Journal of Environmental Science and Health Part A, 43, 961-968.

    Article  CAS  Google Scholar 

  • Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35.

    Article  CAS  Google Scholar 

  • Murray, C. A., & Parsons, S. A. (2004). Comparison of AOPs for the removal of natural organic matter: performance and economic assessment. Water Science and Technology, 49(4), 267-272.

    CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, B98, 33-50.

    Article  Google Scholar 

  • Nikolaou, A., Rizzo, L., & Selcuk, H. (eds). (2007). Control of disinfection by-products in drinking water systems. Hauppauge, NY: Nova Science Publishers, Inc.

    Google Scholar 

  • Parsons, S. (2004). Advanced oxidation processes for water and wastewater treatment. Cornwall, UK: IWA Publishing.

    Google Scholar 

  • Petrović, M., Gonzalez, S., & Barceló, D. (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trends in Analytical Chemistry, 22, 685-696.

    Google Scholar 

  • Pignatello, J. J. (1992). Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science and Technology, 26, 944-951.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Liu, D., & Huston, P. (1999). Evidence for an additional oxidant in the Photoassisted Fenton reaction. Environmental Science and Technology, 33, 1832-1839.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1-84.

    Article  CAS  Google Scholar 

  • Rizzo, L., Della Rocca, C., Belgiorno, V., & Bekbolet, M. (2008). Application of photocatalysis as a post treatment method of a heterotrophic-autotrophic denitrification reactor effluent. Chemosphere, 72, 1706-1711.

    Article  CAS  Google Scholar 

  • Rosal, R., Rodriguez, A., Perdigon-Melon, J. A., Mezcua, M., Hernando, M. D., Leton, P., et al. (2008). Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Research, 42, 3719-3728.

    Article  CAS  Google Scholar 

  • Sacher, F., Lange, F. T., Brauch, H.-J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Wurttenberg, Germany. Journal of Chromatography A, 938, 199-210.

    Article  CAS  Google Scholar 

  • Safarzadeh-Amiri, A., Bolton, J. R., & Carter, S. R. (1996). The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies, 1, 18-26.

    CAS  Google Scholar 

  • Serpone, N., Sauvé, G., Koch, R., Tahiri, H., Pichat, P., Piccini, P., et al. (1996). Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: Relative photonic efficiencies ζr. Journal of Photochemistry and Photobiology A: Chemistry, 94(191), 203.

    Google Scholar 

  • Song, W., Ravindran, V., & Pirbazari, M. (2008). Process optimization using a kinetic model for the ultraviolet radiation-hydrogen peroxide decomposition of natural and synthetic organic compounds in groundwater. Chemical Engineering Science, 63, 3249-3270.

    Article  CAS  Google Scholar 

  • Sopajaree, K., Qasim, S. A., Basak, S., & Rajeshwar, K. (1999). An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: Experiments on the ultrafiltration unit and combined operation. Journal of Applied Electrochemistry, 29, 1111-1118.

    Article  CAS  Google Scholar 

  • Speitel, G. E., Symons, J. M., Mialaret, J. M., & Wanielista, M. E. (2000). AOP/biofilm processes for DOX precursors. Journal of American Water Works Association, 92, 59-73.

    CAS  Google Scholar 

  • Stackelberg, P. E., Gibs, J., Furlong, E. T., Meyer, M. T., Zaugg, S. D., & Lippincott, R. L. (2007). Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of the Total Environment, 377, 255-272.

    Article  CAS  Google Scholar 

  • Suty, H., De Traversay, C., & Cost, M. (2004). Applications of advanced oxidation processes: Present and future. Water Science and Technology, 49, 227-233.

    CAS  Google Scholar 

  • Tarr, M. A. (ed). (2003). Chemical degradation methods for wastes and pollutants: Environmental and industrial applications. NY, USA: Marcel Dekker.

    Google Scholar 

  • Tekin, H., Bilkay, O., Ataberk, S., Balta, T., Ceribasi, H., Sanin, D., et al. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, N136, 258-265.

    Article  Google Scholar 

  • Thiruvenkatachari, R., Kwon, T. O., & Moon, I. S. (2005). Application of slurry type photocatalytic oxidation-submerged hollow fiber microfiltration hybrid system for the degradation of bisphenol A (BPA). Separation Science and Technology, 40, 2871-2888.

    Article  CAS  Google Scholar 

  • Toor, R., & Mohseni, M. (2007). UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere, 66, 2087-2095.

    Article  CAS  Google Scholar 

  • USEPA. (2003). Occurrence Estimation Methodology and Occurrence Findings Report for the Six-Year Review of Existing National Primary Drinking Water Regulations, EPA-815-R-03-006. Office of Water, Washington, DC.

    Google Scholar 

  • Uyguner, C. S., Bekbolet, M., & Swietlik, J. (2007). Natural organic matter: Definitions and characterization. In A. Nikolaou, L. Rizzo & H. Selcuk (Eds.), Control of disinfection by-products in drinking water systems (pp. 253-277). Hauppauge, NY: Nova Science Publishers, Inc.

    Google Scholar 

  • Van der Kooij, D., Hijnen, W. A. M., & Kruithof, J. C. (1989). The effects of ozonation, biological filtration and distributionon the concentration of easily assimilable organic carbon (AOC) in drinking water. Ozone: Science and Engineering, 11, 297-311.

    Google Scholar 

  • Vieno, N. M., Harkki, H., Tuhkanen, T., & Kronberg, L. (2007). Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environmental Science and Technology, 41, 5077-5084.

    Article  CAS  Google Scholar 

  • Walling, C. (1975). Fenton’s reagent revisited. Accounts of Chemical Research, 8, 125-131.

    Article  CAS  Google Scholar 

  • Wang, X. J., Song, Y., & Mai, J. S. (2008). Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. Journal of Hazardous Materials, 160, 34-348.

    Google Scholar 

  • Wang, X., Zeng, G., & Zhu, J. (2008). Treatment of jean wash wastewater by combined coagulation, hydrolysis/acidification and Fenton oxidation. Journal of Hazardous Materials, 153, 810-816.

    Article  CAS  Google Scholar 

  • Westerhoff, P., Yoon, Y., Snyder, S., & Wert, E. (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology, 39, 6649-6663.

    Article  CAS  Google Scholar 

  • Xi, W., & Geissen, S. (2001). Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Research, 35, 1256-1262.

    Article  CAS  Google Scholar 

  • Yoshihara, S., & Murugananthan, M. (2009). Decomposition of various endocrine-disrupting chemicals at boron-doped diamond electrode. Electrochimica Acta, 54, 2031-2038.

    Article  CAS  Google Scholar 

  • Zepp, R. G., Faust, B. C., & Hoigné, J. (1992). Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: The photo-Fenton reaction. Environmental Science and Technology, 26, 313-319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D. Fatta-Kassinos would like to acknowledge the financial assistance obtained by the Cyprus Research Promotion Foundation under the ‘PHAREM’ (ΑΕΙFΟ/0506/16), ‘SOLTEC’ (AEIFO 0308/BIE/01), ‘ESTROGENS’ (PROEM/0308/06) and ‘IX-Aqua’ (UPGRADING/DURABLE/0308/07) projects.

S. Malato wishes to thank the European Union for its financial assistance under the ‘INNOVAMED’ Project (INCO-CT-2006-517728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despo Fatta-Kassinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fatta-Kassinos, D., Hapeshi, E., Malato, S., Mantzavinos, D., Rizzo, L., Xekoukoulotakis, N.P. (2010). Removal of Xenobiotic Compounds from Water and Wastewater by Advanced Oxidation Processes. In: Fatta-Kassinos, D., Bester, K., Kümmerer, K. (eds) Xenobiotics in the Urban Water Cycle. Environmental Pollution, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3509-7_21

Download citation

Publish with us

Policies and ethics