Skip to main content

Islet Structure and Function in the GK Rat

  • Chapter
  • First Online:
The Islets of Langerhans

Abstract

Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto–Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK islet abnormalities so far identified is proposed in this perspective. The pathogenesis of defective β-cell number and function in the GK model is also discussed. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (i) several susceptibility loci containing genes responsible for some diabetic traits (distinct loci encoding impairment of β-cell metabolism and insulin exocytosis, but no quantitative trait locus for decreased β-cell mass); (ii) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas (decreased β-cell neogenesis and proliferation) transmitted over generations; and (iii) loss of β-cell differentiation related to chronic exposure to hyperglycaemia/hyperlipidaemia, islet inflammation, islet oxidative stress, islet fibrosis and perturbed islet vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–10.

    PubMed  CAS  Google Scholar 

  2. Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 2004;47:581–9.

    PubMed  CAS  Google Scholar 

  3. Goto Y, Kakizaki M, Masaki N. Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 1975;51:80–5.

    Google Scholar 

  4. Goto Y, Suzuki KI, Sasaki M, Ono T, Abe S. GK rat as a model of nonobese, noninsulindependent diabetes. Selective breeding over 35 generations. In: Lessons from Animal Diabetes. Shafrir E, Renold AE Eds. London, Libbey, 1988; p. 301–3.

    Google Scholar 

  5. Portha B, Giroix MH, Serradas P, Gangnerau MN, Movassat J, Rajas F, Bailbé D, Plachot C, Mithieux G, Marie JC. Beta-cell function and viability in the spontaneously diabetic GK rat. Information from the GK/Par colony. Diabetes 2001;50 [Suppl 1]:89–93.

    Google Scholar 

  6. Östenson CG. The Goto-Kakizaki rat. In: Animal Models of Diabetes: A Primer. Sima AAF, Shafrir E, Eds. Amsterdam, Harwood Academic, 2001; p. 197–211.

    Google Scholar 

  7. Portha B. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm. Diab Metab Res Rev 2005;21:495–504.

    CAS  Google Scholar 

  8. Portha B, Lacraz G, Dolz M, Giroix MH, Homo-Delarche F, Movassat J. Issues surrounding beta-cells and their roles in type 2 diabetes. What tell us the GK rat model. Expert Rev Endocrinol Metab 2007;2:785–95.

    CAS  Google Scholar 

  9. Portha B, Serradas P, Bailbé D, Suzuki KI, Goto Y, Giroix MH. β-Cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Dissociation between reductions in glucose transport and glucose-stimulated insulin secretion. Diabetes 1991;40: 486–91.

    PubMed  CAS  Google Scholar 

  10. Ohneda M, Johnson JH, Inman LR, Chen L, Suzuki KI, Goto Y, Alam T, Ravazzola M, Orci L, Unger RH. GLUT2 expression and function in β-cells of GK rats with NIDDM. Diabetes 1993;42:1065–72.

    PubMed  CAS  Google Scholar 

  11. Lewis BM, Ismail IS, Issa B, Peters JR, Scanlon MF. Desensitisation of somatostatin, TRH and GHRH responses to glucose in the diabetic Goto-Kakizaki rat hypothalamus. J Endocrinol. 1996;151:13–7.

    PubMed  CAS  Google Scholar 

  12. Duarte AI, Santos MS, Seiça R, Oliveira CR. Oxidative stress affects synaptosomal γ-aminobutyric acid and glutamate transport in diabetic rats. The role of insulin. Diabetes 2004;53:2110–6.

    PubMed  CAS  Google Scholar 

  13. Villar-Palasi C, Farese RV. Impaired skeletal muscle glycogen synthase activation by insulin in the Goto-Kakizaki (G/K) rat. Diabetologia 1994;37:885–8.

    PubMed  CAS  Google Scholar 

  14. Hughes SJ, Suzuki K, Goto Y. The role of islet secretory function in the development of diabetes in the GK Wistar rat. Diabetologia 1994;37:863–70.

    PubMed  CAS  Google Scholar 

  15. Metz SA, Meredith M, Vadakekalam J, Rabaglia ME, Kowluru A. A defect late in stimulus secretion coupling impairs insulin secretion in Goto–Kakizaki diabetic rats. Diabetes 1999;48:1754–762.

    PubMed  CAS  Google Scholar 

  16. Wallis RH, Wallace KJ, Collins SC, Mc Ateer M, Argoud K, Bihoreau MT, Kaisaki PJ, Gauguier D. Enhanced insulin secretion and cholesterol metabolism in congenic strains of the spontaneously diabetic (type 2) Goto-Kakizaki rat are controlled by independent genetic loci in rat chromosome 8. Diabetologia 2004;47:1096–106.

    PubMed  CAS  Google Scholar 

  17. Sener A, Ladrière L, Malaisse WJ. Assessment by D-[(3)H]mannoheptulose uptake of B-cell density in isolated pancreatic islets from Goto-Kakizaki rats. Int J Mol Med.2001;8:177–80.

    PubMed  CAS  Google Scholar 

  18. Suzuki KI, Goto Y, Toyota T. Spontaneously diabetic GK (Goto–Kakizaki) rats. In: Lessons from Animal Diabetes. Shafrir E. Ed. London, Smith–Gordon, 1992; p. 107–16.

    Google Scholar 

  19. Guenifi A, Abdel-Halim SM, Höög A, Falkmer S, Östenson CG. Preserved beta-cell density in the endocrine pancreas of young, spontaneously diabetic Goto–Kakizaki (GK) rats. Pancreas 1995;10:148–53.

    PubMed  CAS  Google Scholar 

  20. Abdel-Halim SM, Guenifi A, Efendic S, Östenson CG. Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously non-insulin dependent diabetic GK (Goto-Kakizaki) rat. Acta Physiol Scand 1993;148:219–26.

    PubMed  CAS  Google Scholar 

  21. Movassat J, Saulnier C, Serradas P, Portha B. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia 1997;40:916–25.

    PubMed  CAS  Google Scholar 

  22. Guest PC, Abdel-Halim SM, Gross DJ, Clark A, Poitout V, Amaria R, Östenson CG, Hutton JC. Proinsulin processing in the diabetic Goto–Kakizaki rat. J Endocrinol 2002;175: 637–647.

    PubMed  CAS  Google Scholar 

  23. Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MKJ, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 2007;56:2356–70.

    PubMed  CAS  Google Scholar 

  24. Ehses JA, Calderari S, Irminger JC, Serradas P, Giroix MH, Egli A, Portha B, Donath MY, Homo-Delarche F. Islet Inflammation in type 2 diabetes (T2D): from endothelial to beta-cell dysfunction. Current Immunol Rev 2007;3:216–32.

    CAS  Google Scholar 

  25. Homo-Delarche F, Calderari S, Irminger JC, Gangnerau MN, Coulaud J, Rickenbach K, Dolz M, Halban P, Portha B, Serradas S. Islet Inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK Rat. Diabetes 2006;55:1625–33.

    PubMed  CAS  Google Scholar 

  26. Ghanaat-Pour H, Huang Z, Lehtihet M, Sjohölm A. Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. J Mol Endocrinol 2007;39:135–50.

    PubMed  CAS  Google Scholar 

  27. Atef N, Portha B, Penicaud L. Changes in islet blood flow in rats with NIDDM. Diabetologia 1994;37:677–80.

    PubMed  CAS  Google Scholar 

  28. Svensson AM, Östenson CG, Sandler S, Efendic S, Jansson L. Inhibition of nitric oxide synthase by NG-nitro-L-arginine causes a preferential decrease in pancreatic islet blood flow in normal rats and spontaneously diabetic GK rats. Endocrinology 1994;135:849–53.

    PubMed  CAS  Google Scholar 

  29. Svensson AM, Östenson CG, Jansson L. Age-induced changes in pancreatic islet blood flow: evidence for an impaired regulation in diabetic GK rats. Am J Physiol Endocrinol Metab 2000;279:E1139–44.

    PubMed  CAS  Google Scholar 

  30. Carlsson PO, Jansson L, Östenson CG, Källskog O. Islet capillary blood pressure increase mediated by hyperglycemia in NIDDM GK rats. Diabetes 1997;46:947–52.

    PubMed  CAS  Google Scholar 

  31. Lacraz G, Figeac F, Movassat J, Kassis N, Coulaud J, Galinier A, Leloup C, Bailbé D, Homo-Delarche F, Portha B. Diabetic Rat beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses. PLoS ONE 2009; 4(8):e6500.

    Google Scholar 

  32. Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 1999;48:927–32.

    PubMed  CAS  Google Scholar 

  33. Giroix MH, Saulnier C, Portha B. Decreased pancreatic islet response to L-leucine in the spontaneously diabetic GK rat: enzymatic, metabolic and secretory data. Diabetologia 1999;42:965–77.

    PubMed  CAS  Google Scholar 

  34. Momose K, Nunomiya S, Nakata M, Yada T, Kikuchi M, Yashiro T. Immunohistochemical and electron-microscopic observation of beta-cells in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. Med Mol Morphol 2006;39:146–53.

    PubMed  Google Scholar 

  35. Koyama M, Wada R, Sakuraba H, Mizukami H, Yagihashi S. Accelerated loss of islet beta-cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol 1998;153:537–45.

    PubMed  CAS  Google Scholar 

  36. Goda T, Suruga K, Komori A, Kuranuki S, Mochizuki K, Makita Y, Kumazawa T. Effects of miglitol, an alpha-glucosidase inhibitor, on glycaemic status and histopathological changes in islets in non-obese, non-insulin-dependent diabetic Goto-Kakizaki rats. British J Nutr 2007;98:702–10.

    CAS  Google Scholar 

  37. Seiça R, Martins MJ, Pessa PB, Santos RM, Rosario LM, Suzuki KI, Martins MI. Morphological changes of islet of Langerhans in an animal model of type 2 diabetes. Acta Med Port 2003;16:381–8.

    PubMed  Google Scholar 

  38. Movassat J, Portha B. Beta-cell growth in the neonatal Goto-Kakisaki rat and regeneration after treatment with streptozotocin at birth. Diabetologia 1999;42:1098–106.

    PubMed  CAS  Google Scholar 

  39. Miralles F, Portha B. Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes 2001;50 [Suppl 1]:84–8.

    Google Scholar 

  40. Plachot C, Movassat J, Portha B. Impaired beta-cell regeneration after partial pancreatectomy in the adult Goto-Kakizaki rat, a spontaneous model of type 2 diabetes. Histochem Cell Biol 2001;116:131–9.

    PubMed  CAS  Google Scholar 

  41. Calderari S, Gangnerau MN, Thibault M, Meile MJ, Kassis N, Alvarez C, Kassis N, Portha B, Serradas, P. Defective IGF-2 and IGFR1 protein production in embryonic pancreas precedes beta cell mass anomaly in Goto-Kakizaki rat model of type 2 diabetes. Diabetologia 2007;50:1463–71.

    PubMed  CAS  Google Scholar 

  42. Serradas P, Goya L, Lacorne M, Gangnerau MN, Ramos S, Alvarez C, Pascual-Leone AM, Portha B. Fetal insulin-like growth factor-2 production is impaired in the GK rat model of type 2 diabetes. Diabetes 2002;51:392–7.

    PubMed  CAS  Google Scholar 

  43. Movassat J, Calderari S, Fernández E, Martín MA, Escrivá F, Plachot C, Gangnerau MN, Serradas P, Álvarez, C., Portha, B., Type 2 Diabetes – A matter of failing beta-cell neogenesis? Clues from the GK rat model. Diabetes Obes Metab 2007;9 [Suppl 2]:187–95.

    CAS  Google Scholar 

  44. Simmons R. Developmental origins of adult metabolic disease. Endocrinol Metab Clin N Am 2006;35:193–204.

    CAS  Google Scholar 

  45. Serradas P, Gangnerau MN, Giroix MH, Saulnier C, Portha B. Impaired pancreatic beta cell function in the fetal GK rat. Impact of diabetic inheritance. J Clin Invest.1998;101:899–904.

    PubMed  CAS  Google Scholar 

  46. Gill-Randall R, Adams D, Ollerton RL, Lewis M, Alcolado JC. Type 2 diabetes mellitus – genes or intrauterine environment? An embryo transfer paradigm in rats. Diabetologia 2004;47:1354–9.

    PubMed  CAS  Google Scholar 

  47. Chavey A, Gangnerau MN, Maulny L, Bailbé D, Movassat J, Renard JP, Portha B. Intrauterine programming of beta-cell development and function by maternal diabetes. What tell us embryo-transfer experiments in GK/Par rats? (Abstract) Diabetologia 2008;51[Suppl 1]:A151.

    Google Scholar 

  48. Calderari S, Gangnerau MN, Meile MJ, Portha B, Serradas P. Is defective pancreatic beta-cell mass environmentally programmed in Goto Kakizaki rat model of type 2 diabetes: Insights from cross breeding studies during suckling period. Pancreas 2006;33:412–7.

    PubMed  Google Scholar 

  49. Gauguier D, Froguel P, Parent V, Bernard C, Bihoreau MT, Portha B, James MR, Penicaud L, Lathrop M, Ktorza A. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 1996;12:38–43.

    PubMed  CAS  Google Scholar 

  50. Galli J, Li LS, Glaser A, Östenson CG, Jiao H, Fakhrai-Rad H, Jacob HJ, Lander E, Luthman H. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 1996;12:31–7.

    PubMed  CAS  Google Scholar 

  51. Lin JM, Ortsäter H, Fakhraid-Ra H, Galli J, Luthman H, Bergsten P. Phenotyping of individual pancreatic islets locates genetic defects in stimulus secretion coupling to Niddm1i within the major diabetes locus in GK rats. Diabetes 2001;50:2737–43.

    PubMed  CAS  Google Scholar 

  52. Granhall C, Rosengren AH, Renström E, Luthman H. Separately inherited defects in insulin exocytosis and beta-cell glucose metabolism contribute to type 2 diabetes. Diabetes 2006;55:3494–500.

    PubMed  CAS  Google Scholar 

  53. Wallis RH, Collins SC, Kaisaki PJ, Argoud K, Wilder SP, Wallace KJ, Ria M, Ktorza A, Rorsman P, Bihoreau MT, Gauguier D. Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome. PLoS ONE 2008;3(8):e2962.

    Google Scholar 

  54. Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H, Yagihashi S. Inhibition of progressive reduction of islet beta-cell mass in spontaneously diabetic Goto-Kakizaki rats by alpha-glucosidase inhibitor. Metabolism 2000;49:347–52.

    PubMed  CAS  Google Scholar 

  55. Mizukami H, Wada R, Koyama M, Takeo T, Suga S, Wakui M, Yagihashi S. Augmented beta-cell loss and mitochondrial abnormalities in sucrose-fed GK rats. Virchows Arch 2008;452:383–92.

    PubMed  CAS  Google Scholar 

  56. Keno Y, Tokunaga K, Fujioka S, Kobatake T, Kotani K, Yoshida S, Nishida M, Shimomura I, Matsuo T, Odaka H, Tarui S, Matsuzawa Y. Marked reduction of pancreatic insulin content in male ventromedial hypothalamic-lesioned spontaneously non-insulin-dependent diabetic (Goto-Kakizaki) rats. Metabolism 1994;43:32–7.

    PubMed  CAS  Google Scholar 

  57. Östenson CG, Khan A, Abdel-Halim SM, Guenifi A, Suzuki K, Goto Y, Efendic S. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia 1993;36:3–8.

    PubMed  Google Scholar 

  58. Suzuki N, Aizawa T, Asanuma N, Sato Y, Komatsu M, Hidaka H, Itoh N, Yamauchi K, Hashizume K. An early insulin intervention accelerates pancreatic β-cell dysfunction in young Goto-Kakizaki rats, a model of naturally occurring noninsulin-dependent diabetes. Endocrinology 1997;138:1106–10.

    PubMed  CAS  Google Scholar 

  59. Salehi A, Henningsson R, Mosén H, Östenson CG, Efendic S, Lundquist I. Dysfunction of the islet lysosomal system conveys impairment of glucose-induced insulin release in the diabetic GK rat. Endocrinology 1999;140:3045–53.

    PubMed  CAS  Google Scholar 

  60. Giroix MH, Vesco L, Portha B. Functional and metabolic perturbations in isolated pancreatic islets from the GK rat, a genetic model of non-insulin dependent diabetes. Endocrinology 1993;132:815–22.

    PubMed  CAS  Google Scholar 

  61. Nagamatsu S, Nakamichi Y, Yamamura C, Matsushima S, Watanabe T, Azawa S., Furukawa H, Ishida H. Decreased expression of t-SNARE, syntaxin 1, and SNAP-25 in pancreatic beta-cells is involved in impaired insulin secretion from diabetic GK rat islets: Restoration of decreased t-SNARE proteins improves impaired insulin secretion. Diabetes 1999;48: 2367–73.

    PubMed  CAS  Google Scholar 

  62. Gauguier D, Nelson I, Bernard C, Parent V, Marsac C, Cohen D, Froguel P. Higher maternal than paternal inheritance of diabetes in GK rats. Diabetes 1994;43:220–4.

    PubMed  CAS  Google Scholar 

  63. Kimura K, Toyota T, Kakizaki M, Kudo M, Takebe K, Goto Y. Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J ExpMed 1982;137:453–9.

    CAS  Google Scholar 

  64. Abdel-Halim SM, Guenifi A, Khan A, Larsson O, Berggren PO, Östenson CG, Efendic S. Impaired coupling of glucose signal to the exocytotic machinery in diabetic GK rats; a defect ameliorated by cAMP. Diabetes 1996;45:934–40.

    PubMed  Google Scholar 

  65. Giroix MH, Sener A, Portha B, Malaisse WJ. Preferential alteration of oxidative relative to total glycolysis in pancreatic islets of two rats models of inherited or acquired type 2 (non-insulin dependent) diabetes mellitus. Diabetologia 1993;36:305–9.

    PubMed  CAS  Google Scholar 

  66. Östenson CG, Abdel-Halim SM, Rasschaert J, Malaisse-Lagae F, Meuris S, Sener A, Efendic S, Malaisse WJ. Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats. Diabetologia 1993a;36:722–6.

    PubMed  Google Scholar 

  67. Tsuura Y, Ishida H, Okamoto Y, Kato S, Sakamoto K, Horie M, Ikeda H, Okada Y, Seino Y. Glucose sensitivity of ATP-sensitive K+ channels is impaired in beta-cells of the GK rat. A new genetic model of NIDDM Diabetes 1993;42:1446–53.

    PubMed  CAS  Google Scholar 

  68. Giroix MH, Sener A, Bailbé D, Leclercq-Meyer V, Portha B, Malaisse WJ. Metabolic, ionic and secretory response to D-glucose in islets from rats with acquired or inherited non-insulin dependent diabetes. Biochem Med Metab Biol 1993;50:301–21.

    PubMed  CAS  Google Scholar 

  69. Ling ZC, Efendic S, Wibom R, Abdel-Halim SM, Östenson CG, Landau BR, Khan A. Glucose metabolism in Goto–Kakizaki rat islets. Endocrinology 1998;139:2670–5.

    PubMed  CAS  Google Scholar 

  70. Ling ZC, Hong-Lie C, Östenson CG, Efendic S, Khan A. Hyperglycemia contributes to impaired insulin response in GK rat islets. Diabetes 2001;50[Suppl 1]:108–12.

    CAS  Google Scholar 

  71. Fradet M, Giroix MH, Bailbé D, El Bawab S, Autier V, Kergoat M, Portha B. Glucokinase activators modulate glucose metabolism and glucose-stimulated insulin secretion in islets from diabetic GK/Par rats. (Abstract) Diabetologia 2008;51 [Suppl 1]:A198–9.

    Google Scholar 

  72. Hughes SJ, Faehling M, Thorneley CW, Proks P, Ashcroft FM, Smith PA. Electrophysiological and metabolic characterization of single beta-cells and islets from diabetic GK rats. Diabetes 1998;47:73–81.

    PubMed  CAS  Google Scholar 

  73. Zhou YP, Östenson CG, Ling ZC, Grill V. Deficiency of pyruvate dehydrogenase activity in pancreatic islets of diabetic GK rats. Endocrinology 1995;136:3546–51.

    PubMed  CAS  Google Scholar 

  74. MacDonald MJ, Efendic S, Östenson CG. Normalization by insulin treatment of low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of the GK rat. Diabetes 1996;45:886–90.

    PubMed  Google Scholar 

  75. Serradas P, Giroix M-H, Saulnier C, Gangnerau MN, Borg LAH, Welsh M, Portha B, Welsh N. Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of non insulin-dependent diabetes. Endocrinology 1995;136:5623–31.

    PubMed  CAS  Google Scholar 

  76. Marie JC, Bailbé D, Gylfe E, Portha B. Defective glucose-dependent cytosolic Ca2+ handling in islets of GK and nSTZ rat models of type2 diabetes. J Endocrinol 2001;169:169–76.

    PubMed  CAS  Google Scholar 

  77. Dolz M, Bailbé D, Giroix MH, Calderari S, Gangnerau MN, Serradas P, Rickenbach K, Irminger JC, Portha B. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta cell muscarinic receptor activation on cAMP production. Diabetes 2005;54:3229–37.

    PubMed  CAS  Google Scholar 

  78. Shang W, Yasuda K, Takahashi A, Hamasaki A, Takehiro M, Nabe K, Zhou H, Naito R, Fujiwara H, Shimono D, Ueno H, Ikeda H, Toyoda K, Yamada Y, Kurose T. Effect of high dietary fat on insulin secretion in genetically diabetic Goto-Kakizaki rats. Pancreas 2002;25:393–9.

    PubMed  Google Scholar 

  79. Briaud I, Kelpe CL, Johnson LM, Tran PO, Poitout V. Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic versus normoglycemic rats. Diabetes 2002;51:662–8.

    PubMed  CAS  Google Scholar 

  80. Dolz M, Bailbé D, Movassat J, Le Stunff H, Kassis K, Giroix MH, Portha B. Pivotal role of cAMP in the acute restitution of defective glucose-stimulated insulin release in diabetic GK rat by GLP-1. Diabetes 2006;55[Suppl 1]:A371.

    Google Scholar 

  81. Váradi A, Molnár E, Östenson CG, Ashcroft SJ. Isoforms of endoplasmic reticulum Ca2+-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J 1996;319:521–7.

    PubMed  CAS  Google Scholar 

  82. Abdel-Halim SM, Guenifi A, He B, Yang B, Mustafa M, Höjeberg B, Hillert J, Bakhiet M, Efendic S. Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes. Diabetes 1998;47:498–504.

    PubMed  CAS  Google Scholar 

  83. Guenifi A, Simonsson E, Karlsson S, Ahren B, Abdel-Halim SM. Carbachol restores insulin release in diabetic GK rat islets by mechanisms largely involving hydrolysis of diacylglycerol and direct interaction with the exocytotic machinery. Pancreas 2001;22:164–71.

    PubMed  CAS  Google Scholar 

  84. Mosén H, Östenson CG, Lundquist I., Alm P, Henningsson R, Jimenez-Feltstrom J, Guenifi A, Efendic S, Salehi A. Impaired glucose-stimulated insulin secretion in the GK rat is associated with abnormalities in islet nitric oxide production. Regulatory Peptides 2008;151:139–46.

    PubMed  Google Scholar 

  85. Salehi A, Meidute Abaraviciene S, Jimenez-Feltstrom J, Östenson CG, Efendic S, Lundquist I. Excessive islet NO generation in type 2 diabetic GK rats coincides with abnormal hormone secretion and is counteracted by GLP1. PLoS ONE 2008;3(5):e2165.

    Google Scholar 

  86. Mosén H, Salehi A, Alm P, Henningsson R, Jimenez-Feltström J, Östenson CG, Efendic S, Lundquist I. Defective glucose-stimulated insulin release in the diabetic Goto-Kakizaki (GK) rat coincides with reduced activity of the islet carbon monoxide signaling pathway. Endocrinology 2005;146:1553–8.

    PubMed  Google Scholar 

  87. Warwar N, Efendic S, Östenson CG, Haber EP, Cerasi E, Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells. Diabetes-related changes in the GK rat. Diabetes 2006;55:590–9.

    PubMed  CAS  Google Scholar 

  88. Rose T, Efendic S, Rupnik M. Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats. J Gen Physiol 2007;129:493–508.

    PubMed  CAS  Google Scholar 

  89. Abella A, Marti L, Camps M, Claret M, Fernández-Alvarez J, Gomis R, Guma A, Viguerie N, Carpéné C, Palacin M, Testar X, Zorzan, A. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 activity exerts an antidiabetic action in Goto–Kakizaki rats. Diabetes 2003;52:1004–13.

    PubMed  CAS  Google Scholar 

  90. Chen J, Östenson CG. Inhibition of protein-tyrosine phosphatases stimulates insulin secretion in pancreatic islets of diabetic Goto–Kakizaki rats. Pancreas 2005;30:314–7.

    PubMed  CAS  Google Scholar 

  91. Östenson CG, Sandberg-Nordqvist AC, Chen J, Hällbrink M, Rotin D, Langel U, Efendic S. Overexpression of protein tyrosine phosphatase PTP sigma is linked to impaired glucose-induced insulin secretion in hereditary diabetic Goto–Kakizaki rats. Biochem Biophys Res Commun 2002;291:945–50.

    PubMed  Google Scholar 

  92. Kowluru A. Defective protein histidine phosphorylation in islets from the Goto– Kakizaki diabetic rat. Am J Physiol 2003;285:E498–503.

    CAS  Google Scholar 

  93. Leckström A, Östenson CG, Efendic S, Arnelo U, Permert J, Lundquist I, Westermark P. Increased storage and secretion of islet amyloid polypeptide relative to insulin in the spontaneously diabetic GK rat. Pancreas 1996;13:259–67.

    PubMed  Google Scholar 

  94. Weng HB, Gu Q, Liu M, Cheng NN, Li D, Gao X. Increased secretion and expression of amylin in spontaneously diabetic Goto-Kakizaki rats treated with rhGLP1(7-36). Acta Pharmacol Sin 2008;29:573–9.

    PubMed  CAS  Google Scholar 

  95. Okamoto Y, Ishida H, Tsuura Y, Yasuda K, Kato S, Matsubara H, Nishimura M, Mizuno N, Ikeda H, Seino Y. Hyperresponse in calcium-induced insulin release from electrically permeabilized pancreatic islets of diabetic GK rats and its defective augmentation by glucose. Diabetologia 1995;38:772–8.

    PubMed  CAS  Google Scholar 

  96. Gaisano HY, Östenson CG, Sheu L, Wheeler MB, Efendic S. Abnormal expression of pancreatic islet exocytotic soluble N-ethylmaleimide-sensitive factor attachment protein receptors in Goto-Kakizaki rats is partially restored by phlorizin treatment and accentuated by high glucose treatment. Endocrinology 2002;143:4218–26.

    PubMed  CAS  Google Scholar 

  97. Zhang W, Khan A, Östenson CG, Berggren PO, Efendic S, Meister B. Down-regulated expression of exocytotic proteins in pancreatic islets of diabetic GK rats. Biochem Biophys Res Commun 2002;291:1038–44.

    PubMed  CAS  Google Scholar 

  98. Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Nagai S, Nakamichi Y, Nagamatsu S. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells: Different behaviour of granule motion between normal and Goto–Kakizaki diabetic rat beta-cells. Biochem. J. 2004;381:13–8.

    PubMed  CAS  Google Scholar 

  99. Movassat J, Deybach C, Bailbé D, Portha B. Involvement of cortical actin cytoskeleton in the defective insulin secretion in Goto-Kakizaki rats. (Abstract) Diabetes 2005;54:A1.

    Google Scholar 

  100. Kaiser N, Nesher R, Oprescu A, Efendic S, Cerasi E. Characterization of the action of S21403 (mitiglinide) on insulin secretion and biosynthesis in normal and diabetic beta-cells. Br J Pharmacol 2005;146:872–81.

    PubMed  CAS  Google Scholar 

  101. Katayama N, Hughes SJ, Persaud SJ, Jones PM, Howell SL. Insulin secretion from islets of GK rats is not impaired after energy generating steps. Mol Cell Endocrinol 1995;111:125–8.

    PubMed  CAS  Google Scholar 

  102. Yasuda K, Okamoto Y, Nunoi K, Adachi T, Shihara N, Tamon A, Suzuki N, Mukai E, Fujimoto S, Oku A, Tsuda K, Seino Y. Normalization of cytoplasmic calcium response in pancreatic beta-cells of spontaneously diabetic GK rat by the treatment with T-1095, a specific inhibitor of renal Na+-glucose co-transporters. Horm Metab Res 2002;34:217–21.

    PubMed  CAS  Google Scholar 

  103. Kawai J, Ohara-Imaizumi M, Nakamichi Y, Okamura T, Akimoto Y, Matsushima S, Aoyagi K, Kawakami H, Watanabe T, Watada H, Kawamori R, Nagamatsu S. Insulin exocytosis in Goto-Kakizaki rat beta-cells subjected to long-term glinide or sulfonylurea treatment. Biochem J 2008;412:93–101.

    PubMed  CAS  Google Scholar 

  104. Dachicourt N, Bailbé D, Gangnerau MN, Serradas P, Ravel D, Portha B. Effect of gliclazide treatment on insulin secretion and beta-cell mass in non-insulin dependent diabetic Goto-Kakizaki rats. Eur J Pharmacol 1998;361:243–51.

    PubMed  CAS  Google Scholar 

  105. Ohta T, Furukawa N, Komuro G, Yonemori F, Wakitani K. JTT-608 restores impaired early insulin secretion in diabetic Goto-Kakizaki rats. Br J Pharmacol 1999; 126:1674–80.

    PubMed  CAS  Google Scholar 

  106. Ohta T, Miyajima K, Komuro G, Furukawa N, Yonemori F. Antidiabetic effect of chronic administration of JTT-608, a new hypoglycaemic agent, in diabetic Goto-Kakizaki rats. Eur J Pharmacol 2003;476:159–66.

    PubMed  CAS  Google Scholar 

  107. Ishida H, Kato S, Nishimura M, Mizuno N, Fujimoto S, Mukai E, Kajikawa M, Yamada Y, Odaka H, Ikeda H, Seino Y. Beneficial effect of long-term combined treatment with voglibose and pioglitazone on pancreatic islet function of genetically diabetic GK rats. Horm Metab Res 1998;30:673–8.

    PubMed  CAS  Google Scholar 

  108. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjögren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del Prato S, Groop L. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007;117:2155–63.

    PubMed  CAS  Google Scholar 

  109. Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P. Islet specific Wnt activation in human type 2 diabetes. Exp Diabetes Res Article 2008; ID 728763, doi:10.1155/2008/728763.

    Google Scholar 

  110. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320–3.

    PubMed  CAS  Google Scholar 

  111. Portha B, Lacraz G, Kergoat M, Homo-Delarche F, Giroix MH, Bailbé D, Gangnerau MN, Dolz M, Tourrel-Cuzin C, Movassat J. The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol 2009;297:73–85.

    Google Scholar 

Download references

Acknowledgments

The GK/Par studies done at Lab B2PE, BFA Unit have been funded by the CNRS, the French ANR (programme Physio 2006 – Prograbeta), the EFSD/MSD European Foundation, MERCK-SERONO, French Diabetes Association and NEB Research Foundation. G. Lacraz and F. Figeac received a doctoral fellowship from the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche (Ecole Doctorale 394, Physiologie/Physiopathologie). A. Chavey was the recipient of a CNRS postdoctoral fellowship and a NESTLE-France grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Portha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Portha, B. et al. (2010). Islet Structure and Function in the GK Rat. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_21

Download citation

Publish with us

Policies and ethics