Skip to main content

Cyclic AMP Signaling in Pancreatic Islets

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

Cyclic 3’5’AMP (cAMP) is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet β-cell, where it is formed by the activity of adenylyl cyclases, which are stimulated by glucose, through elevation in intracellular calcium concentrations, and by the incretin hormones (GLP-1 and GIP). cAMP is rapidly degraded in the pancreatic islet β-cell by various cyclic nucleotide phosphodiesterase (PDE) enzymes. Many steps involved in glucose-induced insulin secretion are modulated by cAMP, which is also important in regulating pancreatic islet β-cell differentiation, growth and survival. This chapter discusses the formation, destruction and actions of cAMP in the islets with particular emphasis on the β-cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turtle J, Kipnis D. An adrenergic receptor mechanism for the control of cyclic 3'5' adenosine monophosphate synthesis in tissues. Biochem Biophys Res Commun 1967;28:797–802.

    PubMed  CAS  Google Scholar 

  2. Charles M, Fanska R, Schmid F, Forsham P, Grodsky G. Adenosine 3',5'-monophosphate in pancreatic islets: glucose-induced insulin release. Science 1973;179:569–571.

    PubMed  CAS  Google Scholar 

  3. Grill V, Cerasi E. Activation by glucose of adenyl cyclase in pancreatic islets of the rat. FEBS Lett 1973;33:311–4.

    PubMed  CAS  Google Scholar 

  4. Kim J, Roberts C, Berg S, Caicedo A, Roper S, Chaudhari N. Imaging cyclic AMP changes in pancreatic islets of transgenic reporter mice. PLoS ONE 2008;3:e2127.

    PubMed  Google Scholar 

  5. Landa LJ, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev V, Lohse M, Holz G, Roe M. Interplay of Ca2+ and cAMP signaling in the insulin–secreting MIN6 beta-cell line. J Biol Chem 2005;280:31294–302.

    PubMed  CAS  Google Scholar 

  6. Ramos L, Zippin J, Kamenetsky M, Buck J, Levin L. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J Gen Physiol 2008;132:329–38.

    PubMed  CAS  Google Scholar 

  7. Sharp G. The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release. Diabetologia 1979;16:287–96.

    PubMed  CAS  Google Scholar 

  8. Persaud S, Jones P, Howell S. Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Commun 1990;173:833–9.

    PubMed  CAS  Google Scholar 

  9. Lester L, Langeberg L, Scott J. Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc Natl Acad Sci U S A 1997;94:14942–7.

    PubMed  CAS  Google Scholar 

  10. Holz G, Habener J. Signal transduction crosstalk in the endocrine system: pancreatic beta-cells and the glucose competence concept. Trends Biochem Sci 1992;17:388–93.

    PubMed  CAS  Google Scholar 

  11. Howell S, Jones P, Persaud S. Regulation of insulin secretion: the role of second messengers. Diabetologia 1994;37 Suppl 2:S30–5.

    PubMed  CAS  Google Scholar 

  12. Braun M, Ramracheya R, Johnson P, Rorsman P. Exocytotic properties of human pancreatic beta-cells. Ann N Y Acad Sci 2009;1152:187–93.

    PubMed  CAS  Google Scholar 

  13. MacIntosh C, Horowitz M, Verhagen M, Smout A, Wishart J, Morris H, Goble E, Morley J, Chapman I. Effect of small intestinal nutrient infusion on appetite, gastrointestinal hormone release, and gastric myoelectrical activity in young and older men. Am J Gastroenterol 2001;96:997–1007.

    PubMed  CAS  Google Scholar 

  14. Brubaker P, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 2003;81:1005–12.

    PubMed  CAS  Google Scholar 

  15. Feinle C, Chapman I, Wishart J, Horowitz M. Plasma glucagon-like peptide-1 (GLP-1) responses to duodenal fat and glucose infusions in lean and obese men. Peptides 2002;23:1491–95.

    PubMed  CAS  Google Scholar 

  16. Wolfe M, Zhao K, Glazier K, Jarboe L, Tseng C. Regulation of glucose-dependent insulinotropic polypeptide release by protein in the rat. Am J Physiol Gastrointest Liver Physiol 2000;279:G561–6.

    PubMed  CAS  Google Scholar 

  17. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 1992;89:8641–5.

    PubMed  CAS  Google Scholar 

  18. Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker D, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004;113:635–45.

    PubMed  CAS  Google Scholar 

  19. Selbie L, Hill S. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol Sci 1998;19:87–93.

    PubMed  CAS  Google Scholar 

  20. Yamazaki S, Katada T, Ui M. Alpha 2-adrenergic inhibition of insulin secretion via interference with cyclic AMP generation in rat pancreatic islets. Mol Pharmacol 1982;21:648–53.

    PubMed  CAS  Google Scholar 

  21. Robertson R, Tsai P, Little S, Zhang H, Walseth T. Receptor-mediated adenylate cyclase-coupled mechanism for PGE2 inhibition of insulin secretion in HIT cells. Diabetes 1987;36:1047–53.

    PubMed  CAS  Google Scholar 

  22. Morgan D, Kulkarni R, Hurley J, Wang Z, Wang R, Ghatei M, Karlsen A, Bloom S, Smith D. Inhibition of glucose stimulated insulin secretion by neuropeptide Y is mediated via the Y1 receptor and inhibition of adenylyl cyclase in RIN 5AH rat insulinoma cells. Diabetologia 1998;41:1482–91.

    PubMed  CAS  Google Scholar 

  23. Kimple M, Nixon A, Kelly P, Bailey C, Young K, Fields T, Casey P. A role for Gz in pancreatic islet β-cell biology. J Biol Chem 2005;280:31708–13.

    PubMed  CAS  Google Scholar 

  24. Drucker D, Philippe J, Mojsov S, Chick W, Habener J. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 1987;84:3434–8.

    PubMed  CAS  Google Scholar 

  25. Doyle M, Egan J. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007;113:546–93.

    PubMed  CAS  Google Scholar 

  26. Maida A, Lovshin J, Baggio L, Drucker D. The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances beta-cell function but does not inhibit gastric emptying in mice. Endocrinology 2008;149:5670–8.

    PubMed  CAS  Google Scholar 

  27. Sonoda N, Imamura T, Yoshizaki T, Babendure J, Lu J, Olefsky J. Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc Natl Acad Sci U S A 2008;105:6614–9.

    PubMed  CAS  Google Scholar 

  28. Amiranoff B, Vauclin-Jacques N, Laburthe M. Functional GIP receptors in a hamster pancreatic beta cell line, In 111: specific binding and biological effects. Biochem Biophys Res Commun 1984;123:671–6.

    PubMed  CAS  Google Scholar 

  29. Siegel E, Creutzfeldt W. Stimulation of insulin release in isolated rat islets by GIP in physiological concentrations and its relation to islet cyclic AMP content. Diabetologia 1985;28:857–61.

    PubMed  CAS  Google Scholar 

  30. Wheeler M, Gelling R, McIntosh C, Georgiou J, Brown J, Pederson R. Functional expression of the rat pancreatic islet glucose-dependent insulinotropic polypeptide receptor: ligand binding and intracellular signaling properties. Endocrinology 1995;136:4629–9.

    PubMed  CAS  Google Scholar 

  31. Zhou J, Livak M, Bernier M, Muller D, Carlson O, Elahi D, Maudsley S, Egan J. Ubiquitination is involved in glucose-mediated downregulation of GIP receptors in islets. Am J Physiol Endocrinol Metab 2007;293:E538–47.

    PubMed  CAS  Google Scholar 

  32. Yada T, Sakurada M, Ihida K, Nakata M, Murata F, Arimura A, Kikuchi M. Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J Biol Chem 1994;269:1290–3.

    PubMed  CAS  Google Scholar 

  33. Ahrén B. Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci. 2008;1144:28–35.

    PubMed  Google Scholar 

  34. Borboni P, Porzio O, Pierucci D, Cicconi S, Magnaterra R, Federici M, Sesti G, Lauro D, D'Agata V, Cavallaro S, Marlier L. Molecular and functional characterization of pituitary adenylate cyclase-activating polypeptide (PACAP-38)/vasoactive intestinal polypeptide receptors in pancreatic beta-cells and effects of PACAP-38 on components of the insulin secretory system. Endocrinology 1999;140:5530–7.

    PubMed  CAS  Google Scholar 

  35. Yamada S, Komatsu M, Sato Y, Yamauchi K, Kojima I, Aizawa T, Hashizume K. Time-dependent stimulation of insulin exocytosis by 3',5'-cyclic adenosine monophosphate in the rat islet beta-cell. Endocrinology 2002;143:4203–9.

    PubMed  CAS  Google Scholar 

  36. Soga T, Ohishi T, Matsui T, Saito T, Matsumoto M, Takasaki J, Matsumoto S, Kamohara M, Hiyama H, Yoshida S, Momose K, Ueda Y, Matsushime H, Kobori M, Furuichi K. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 2005;326:744–51.

    PubMed  CAS  Google Scholar 

  37. Overton H, Babbs A, Doel S, Fyfe M, Gardner L, Griffin G, Jackson H, Procter M, Rasamison C, Tang-Christensen M, Widdowson P, Williams G, Reynet C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3:167–75.

    PubMed  CAS  Google Scholar 

  38. Chu Z, Jones R, He H, Carroll C, Gutierrez V, Lucman A, Moloney M, Gao H, Mondala H, Bagnol D, Unett D, Liang Y, Demarest K, Semple G, Behan D, Leonard J. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 2007;148:2601–9.

    PubMed  CAS  Google Scholar 

  39. Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol 2001;Toxicol.;41:145–74.

    CAS  Google Scholar 

  40. Willoughby D, Cooper D. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 2007;87:965–1010.

    PubMed  CAS  Google Scholar 

  41. Kamenetsky M, Middelhaufe S, Bank E, Levin L, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006;362:623–39.

    PubMed  CAS  Google Scholar 

  42. Srinivasan M, Aalinkeel R, Song F, Lee B, Laychock S, Patel M. Adaptive changes in insulin secretion by islets from neonatal rats raised on a high-carbohydrate formula. Am J Physiol Endocrinol Metab 2000;279:E1347–57.

    PubMed  CAS  Google Scholar 

  43. Leech C, Castonguay M, Habener J. Expression of adenylyl cyclase subtypes in pancreatic beta-cells. Biochem Biophys Res Commun 1999;254:703–6.

    PubMed  CAS  Google Scholar 

  44. Guenifi A, Portela-Gomes G, Grimelius L, Efendić S, Abdel-Halim S. Adenylyl cyclase isoform expression in non-diabetic and diabetic Goto-Kakizaki (GK) rat pancreas. Evidence for distinct overexpression of type-8 adenylyl cyclase in diabetic GK rat islets. Histochem Cell Biol 2000;113:81–9.

    PubMed  CAS  Google Scholar 

  45. Delmeire D, Flamez D, Hinke S, Cali J, Pipeleers D, Schuit F. Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 2003;46:1383–93.

    PubMed  CAS  Google Scholar 

  46. Seamon K, Daly J. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res 1986;20:1–150.

    PubMed  CAS  Google Scholar 

  47. Insel P, Ostrom R. Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G protein signaling. Cell Mol Neurobiol 2003;23:305–14.

    PubMed  CAS  Google Scholar 

  48. Cali J, Zwaagstra J, Mons N, Cooper D, Krupinski J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem 1994;269:12190–5.

    PubMed  CAS  Google Scholar 

  49. Dolz M, Bailbé D, Giroix M, Calderari S, Gangnerau M, Serradas P, Rickenbach K, Irminger J, Portha B. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production. Diabetes 2005;54:3229–37.

    PubMed  CAS  Google Scholar 

  50. Perry M, Higgs G. Chemotherapeutic potential of phosphodiesterase inhibitors. Curr Opin Chem Biol 1998;2:472–81.

    PubMed  CAS  Google Scholar 

  51. Soderling S, Beavo J. Regulation of cAMP and cGMP signaling. new phosphodiesterases and new functions. Curr Opin Cell Biol 2000;12:174–9.

    PubMed  CAS  Google Scholar 

  52. Mehats C, Andersen C, Filopanti M, Jin S, Conti M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 2002;13:29–35.

    PubMed  CAS  Google Scholar 

  53. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007;76:481–511.

    PubMed  CAS  Google Scholar 

  54. Pyne N, Furman B. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 2003;46:1179–89.

    PubMed  CAS  Google Scholar 

  55. Furman B, Pyne N, Flatt P, O'Harte F. Targeting beta-cell cyclic 3'5' adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. J Pharm Pharmacol 2004;56:1477–92.

    PubMed  CAS  Google Scholar 

  56. Sugden M, Ashcroft S. Cyclic nucleotide phosphodiesterase of rat pancreatic islets. Effects of Ca2+, calmodulin and trifluoperazine. Biochem J 1981;197:459–64.

    PubMed  CAS  Google Scholar 

  57. Capito K, Hedeskov C, Thams P. Cyclic AMP phosphodiesterase activity in mouse pancreatic islets. Effects of calmodulin and phospholipids. Acta Endocrinol (Copenh) 1986;111:533–38.

    CAS  Google Scholar 

  58. Lipson L, Oldham S. The role of calmodulin in insulin secretion: the presence of a calmodulin-stimulatable phosphodiesterase in pancreatic islets of normal and pregnant rats. Life Sci 1983;32:775–80.

    PubMed  CAS  Google Scholar 

  59. Han P, Werber J, Surana M, Fleischer N, Michaeli T. The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion. J Biol Chem 1999;274:22337–44.

    PubMed  CAS  Google Scholar 

  60. Ahmad M, Flatt P, Furman B, Pyne N. The role of the cyclic GMP-inhibited cyclic AMP-specific phosphodiesterase (PDE3) in regulating clonal BRIN-BD11 insulin secreting cell survival. Cell Signal 2000;12:541–48.

    PubMed  CAS  Google Scholar 

  61. Shafiee-Nick R, Pyne N, Furman B. Effects of type-selective phosphodiesterase inhibitors on glucose-induced insulin secretion and islet phosphodiesterase activity. Br J Pharmacol 1995;115:1486–92.

    PubMed  CAS  Google Scholar 

  62. Parker J, VanVolkenburg M, Ketchum R, Brayman K, Andrews K. Cyclic AMP phosphodiesterases of human and rat islets of Langerhans: contributions of types III and IV to the modulation of insulin secretion. Biochem Biophys Res Commun 1995;217:916–23.

    PubMed  CAS  Google Scholar 

  63. Zhao A, Zhao H, Teague J, Fujimoto W, Beavo J. Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci U S A 1997;94:3223–28.

    PubMed  CAS  Google Scholar 

  64. Waddleton D, Wu W, Feng Y, Thompson C, Wu M, Zhou Y, Howard A, Thornberry N, Li J, Mancini J. Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets. Biochem Pharmacol 2008;76:884–93.

    PubMed  CAS  Google Scholar 

  65. Härndahl L, Jing X, Ivarsson R, Degerman E, Ahrén B, Manganiello V, Renström E, Holst L. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J Biol Chem 2002;277:37446–55.

    PubMed  Google Scholar 

  66. Härndahl L, Wierup N, Enerbäck S, Mulder H, Manganiello V, Sundler F, Degerman E, Ahrén B, Holst L. Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J Biol Chem 2004;279:15214–22.

    PubMed  Google Scholar 

  67. Walz H, Härndahl L, Wierup N, Zmuda-Trzebiatowska E, Svennelid F, Manganiello V, Ploug T, Sundler F, Degerman E, Ahrén B, Holst L. Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B. J Endocrinol 2006;189:629–41.

    PubMed  CAS  Google Scholar 

  68. Dov A, Abramovitch E, Warwar N, Nesher R. Diminished phosphodiesterase-8B potentiates biphasic insulin response to glucose. Endocrinology 2008;149:741–8.

    PubMed  CAS  Google Scholar 

  69. Zhao A, Bornfeldt K, Beavo J. Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. J Clin Invest 1998;102:869–73.

    PubMed  CAS  Google Scholar 

  70. Grapengiesser E, Gylfe E, Dansk H, Hellman B. Nitric oxide induces synchronous Ca2+ transients in pancreatic beta cells lacking contact. Pancreas 2001;23:387–92.

    PubMed  CAS  Google Scholar 

  71. Smukler S, Tang L, Wheeler M, Salapatek A. Exogenous nitric oxide and endogenous glucose-stimulated beta-cell nitric oxide augment insulin release. Diabetes 2002;51:3450–60.

    PubMed  CAS  Google Scholar 

  72. Kaneko Y, Ishikawa T, Amano S, Nakayama K. Dual effect of nitric oxide on cytosolic Ca2+ concentration and insulin secretion in rat pancreatic beta-cells. Am J Physiol Cell Physiol 2003;284:C1215–22.

    PubMed  CAS  Google Scholar 

  73. Sunouchi T, Suzuki K, Nakayama K, Ishikawa T. Dual effect of nitric oxide on ATP-sensitive K+ channels in rat pancreatic beta cells. Pflugers Arch 2008;456:573–9.

    PubMed  CAS  Google Scholar 

  74. Cantin L, Magnuson S, Gunn D, Barucci N, Breuhaus M, Bullock W, Burke J, Claus T, Daly M, Decarr L, Gore-Willse A, Hoover-Litty H, Kumarasinghe E, Li Y, Liang S, Livingston J, Lowinger T, Macdougall M, Ogutu H, Olague A, Ott-Morgan R, Schoenleber R, Tersteegen A, Wickens P, Zhang Z, Zhu J, Zhu L, Sweet L. PDE-10A inhibitors as insulin secretagogues. Bioorg Med Chem Lett 2007;17:2869–73.

    PubMed  CAS  Google Scholar 

  75. Fridlyand LE, Harbeck MC, Roe MW, Philipson LH. Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic β-cell. a computational approach. Am J Physiol Cell Physiol. 2007;293:C1924–33.

    PubMed  CAS  Google Scholar 

  76. Dyachok O, Isakov Y, Sågetorp J, Tengholm A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 2006;439:349–52.

    PubMed  CAS  Google Scholar 

  77. Dyachok O, Sågetorp J, Isakov Y, Tengholm A. cAMP oscillations restrict protein kinase A redistribution in insulin-secreting cells. Biochem Soc Trans 2006;34:498–501.

    PubMed  CAS  Google Scholar 

  78. Dyachok O, Idevall-Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008;8:26–37.

    PubMed  CAS  Google Scholar 

  79. Baltrusch S, Lenzen S. Regulation of [Ca2+]i oscillations in mouse pancreatic islets by adrenergic agonists. Biochem Biophys Res Commun 2007;363:1038–43.

    PubMed  CAS  Google Scholar 

  80. Jarnaess E, Taskén K. Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochem Soc Trans 2007;35:931–37.

    PubMed  CAS  Google Scholar 

  81. Dodge-Kafka K, Kapiloff M. The mAKAP signaling complex: integration of cAMP, calcium, and MAP kinase signaling pathways. Eur J Cell Biol 2006;85:593–602.

    PubMed  CAS  Google Scholar 

  82. Fraser I, Tavalin S, Lester L, Langeberg L, Westphal A, Dean R, Marrion N, Scott J. A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events. EMBO J 1998;17:2261–72.

    PubMed  CAS  Google Scholar 

  83. Faruque O, Le-Nguyen D, Lajoix A, Vives E, Petit P, Bataille D, Hani e-H. Cell-permeable peptide-based disruption of endogenous PKA-AKAP complexes: a tool for studying the molecular roles of AKAP-mediated PKA subcellular anchoring. Am J Physiol Cell Physiol 2009;296:C306–16.

    PubMed  CAS  Google Scholar 

  84. Jones PM, Persaud SJ. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic β-cells. Endocr Rev. 1998;429–461.

    Google Scholar 

  85. Lester LB, Faux MC, Nauert JB, Scott JD. Targeted protein kinase A and PP-2B regulate insulin secretion through reversible phosphorylation. Endocrinology. 2001;142(3):1218–27.

    PubMed  CAS  Google Scholar 

  86. Kopperud R, Krakstad C, Selheim F, Døskeland S. cAMP effector mechanisms. Novel twists for an 'old' signaling system. FEBS Lett 2003;546:121–6.

    PubMed  CAS  Google Scholar 

  87. Renström E, Eliasson L, Rorsman P. Protein kinase A-dependent and independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J Physiol 1997;502:105–18.

    PubMed  Google Scholar 

  88. Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005;85:1303–42.

    PubMed  CAS  Google Scholar 

  89. Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki J, Seino S. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A; 2007;104:19333–193.

    PubMed  CAS  Google Scholar 

  90. Holz G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004;53:5–13.

    PubMed  CAS  Google Scholar 

  91. Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H, Seino S. Critical role of cAMP-GEFII––Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001;276:46046–53.

    PubMed  CAS  Google Scholar 

  92. Chepurny O, Leech C, Kelley G, Dzhura I, Dzhura E, Li X, Rindler M, Schwede F, Genieser H, Holz G. Enhanced Rap1 activation and insulin secretagogue properties of an acetoxymethyl ester of an Epac-selective cyclic AMP analog in rat INS-1 cells: Studies with 8-pCPT-2'-O-Me-cAMP-AM. J Biol Chem, 2009.

    Google Scholar 

  93. Liu G, Jacobo S, Hilliard N, Hockerman G. Differential modulation of Cav1.2 and Cav1.3-mediated glucose-stimulated insulin secretion by cAMP in INS-1 cells: distinct roles for exchange protein directly activated by cAMP 2 (Epac2) and protein kinase A. J Pharmacol Exp Ther 2006;318:152–60.

    PubMed  CAS  Google Scholar 

  94. Nakazaki M, Crane A, Hu M, Seghers V, Ullrich S, Aguilar-Bryan L, Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes 2002;51:3440–9.

    PubMed  CAS  Google Scholar 

  95. Eliasson L, Ma X, Renström E, Barg S, Berggren P, Galvanovskis J, Gromada J, Jing X, Lundquist I, Salehi A, Sewing S, Rorsman P. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 2003;121:181–97.

    PubMed  CAS  Google Scholar 

  96. Malaisse W, Malaisse-Lagae F, Mayhew D. A possible role for the adenyl cyclase system in insulin secretion. J Clin Invest 1967;46:1724–34.

    PubMed  CAS  Google Scholar 

  97. Brisson G, Malaisse-Lagae F, Malaisse W. The stimulus-secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine-3',5'-cyclic monophosphate. J Clin Invest 1972;51:232–41.

    PubMed  CAS  Google Scholar 

  98. Holz G, Kühtreiber W, Habener J. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993;361:362–5.

    PubMed  CAS  Google Scholar 

  99. Gromada J, Bokvist K, Ding W, Holst J, Nielsen J, Rorsman P. Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 1998;47:57–65.

    PubMed  CAS  Google Scholar 

  100. He L, Mears D, Atwater I, Kitasato H. Glucagon induces suppression of ATP-sensitive K+ channel activity through a Ca2+/calmodulin-dependent pathway in mouse pancreatic β-cells. J Membr Biol 1998;166:237–44.

    PubMed  CAS  Google Scholar 

  101. Light P, Manning Fox J, Riedel M, Wheeler M. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 2002;16:2135–44.

    PubMed  CAS  Google Scholar 

  102. Kang G, Chepurny O, Malester B, Rindler M, Rehmann H, Bos J, Schwede F, Coetzee W, Holz G. cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic β cells and rat INS-1 cells. J Physiol 2006;573:595–609.

    PubMed  CAS  Google Scholar 

  103. Kang G, Leech C, Chepurny O, Coetzee W, Holz G. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic β-cells and rat INS-1 cells. J Physiol 2008;586:1307–19.

    PubMed  CAS  Google Scholar 

  104. Kim S, Choi W, Han J, Warnock G, Fedida D, McIntosh C. A novel mechanism for the suppression of a voltage-gated potassium channel by glucose-dependent insulinotropic polypeptide: protein kinase A-dependent endocytosis. J Biol Chem 2005;280:28692–700.

    PubMed  CAS  Google Scholar 

  105. MacDonald P, Salapatek A, Wheeler M. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K+ currents in β-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51 Suppl 2002;3:S443–47.

    Google Scholar 

  106. MacDonald P, Wang X, Xia F, El-Kholy W, Targonsky E, Tsushima R, Wheeler M. Antagonism of rat β-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 2003;278:52446–53.

    PubMed  CAS  Google Scholar 

  107. Ammälä C, Ashcroft F, Rorsman P. Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature 1993;363:356–58.

    PubMed  Google Scholar 

  108. Kanno T, Suga S, Wu J, Kimura M, Wakui M. Intracellular cAMP potentiates voltage-dependent activation of L-type Ca2+ channels in rat islet beta-cells. Pflugers Arch 1998;435:578–80.

    PubMed  CAS  Google Scholar 

  109. Suga S, Kanno T, Nakano K, Takeo T, Dobashi Y, Wakui M. GLP-I (7-36) amide augments Ba2+ current through L-type Ca2+ channel of rat pancreatic β-cell in a cAMP-dependent manner. Diabetes 1997;46:1755–60.

    PubMed  CAS  Google Scholar 

  110. Leiser M, Fleischer N. cAMP-dependent phosphorylation of the cardiac-type alpha 1 subunit of the voltage-dependent Ca2+ channel in a murine pancreatic β-cell line. Diabetes 1996;45:1412–8.

    PubMed  CAS  Google Scholar 

  111. Gromada J, Dissing S, Bokvist K, Renström E, Frøkjaer-Jensen J, Wulff B, Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes 1995;44:767–74.

    PubMed  CAS  Google Scholar 

  112. Islam M, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekström T, Westerblad H, Andrade F, Berggren P. In situ activation of the type 2 ryanodine receptor in pancreatic β cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci U S A 1998;95:6145–50.

    PubMed  CAS  Google Scholar 

  113. Holz G, Leech C, Heller R, Castonguay M, Habener J. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem 1999;274:14147–56.

    PubMed  CAS  Google Scholar 

  114. Kang G, Chepurny O, Holz G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic β-cells. J Physiol 2001;536:375–85.

    PubMed  CAS  Google Scholar 

  115. Kang G, Joseph J, Chepurny O, Monaco M, Wheeler M, Bos J, Schwede F, Genieser H, Holz G. Epac-selective cAMP analog 8-pCPT-2'-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic β-cells. J Biol Chem 2003;278:8279–85.

    PubMed  CAS  Google Scholar 

  116. Kang G, Chepurny O, Rindler M, Collis L, Chepurny Z, Li W, Harbeck M, Roe M, Holz G. A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic β cells. J Physiol 2005;566:173–88.

    PubMed  CAS  Google Scholar 

  117. Bode H, Moormann B, Dabew R, Göke B. Glucagon-like peptide 1 elevates cytosolic calcium in pancreatic beta-cells independently of protein kinase A. Endocrinology 1999;140:3919–27.

    PubMed  CAS  Google Scholar 

  118. Tsuboi T, da Silva Xavier G, Holz G, Jouaville L, Thomas A, Rutter G. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 β-cells. Biochem J 2003;369:287–99.

    PubMed  CAS  Google Scholar 

  119. Dyachok O, Gylfe E. Ca2+-induced Ca2+ release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A and triggers exocytosis in pancreatic β-cells. J Biol Chem 2004;279:45455–61.

    PubMed  CAS  Google Scholar 

  120. Kim BJ, Park KH, Yim CY, Takasawa S, Okamoto H, Im MJ, Kim UH Generation of nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose by glucagon-like peptide-1 evokes Ca2+ signal that is essential for insulin secretion in mouse pancreatic islets. Diabetes 2008;57:868–78.

    PubMed  CAS  Google Scholar 

  121. Gillis K, Misler S. Enhancers of cytosolic cAMP augment depolarization-induced exocytosis from pancreatic B-cells: evidence for effects distal to Ca2+ entry. Pflugers Arch 1993;424:195–7.

    PubMed  CAS  Google Scholar 

  122. Ding W, Gromada J. Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 1997;46:615–21.

    PubMed  CAS  Google Scholar 

  123. Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 2006;570:271–82.

    PubMed  CAS  Google Scholar 

  124. Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H. Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse β-cells. J Physiol 2007;582:1087–98.

    PubMed  CAS  Google Scholar 

  125. Hashiguchi H, Nakazaki M, Koriyama N, Fukudome M, Aso K, Tei C. Cyclic AMP/cAMP-GEF pathway amplifies insulin exocytosis induced by Ca2+ and ATP in rat islet beta-cells. Diabetes Metab Res Rev 2006;22:64–71.

    PubMed  CAS  Google Scholar 

  126. Kwan E, Gaisano H. Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet β-cells. Diabetes 2005;54:2734–43.

    PubMed  CAS  Google Scholar 

  127. Kwan E, Xie L, Sheu L, Ohtsuka T, Gaisano H. Interaction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells. Diabetes 2007;56:2579–88.

    PubMed  CAS  Google Scholar 

  128. Kwan E, Gao X, Leung Y, Gaisano H. Activation of exchange protein directly activated by cyclic adenosine monophosphate and protein kinase A regulate common and distinct steps in promoting plasma membrane exocytic and granule-to-granule fusions in rat islet beta cells. Pancreas 2007;35:e45–54.

    PubMed  Google Scholar 

  129. Suzuki Y, Zhang H, Saito N, Kojima I, Urano T, Mogami H. Glucagon-like peptide 1 activates protein kinase C through Ca2+-dependent activation of phospholipase C in insulin-secreting cells. J Biol Chem 2006;281:28499–507.

    PubMed  CAS  Google Scholar 

  130. Chepurny O, Hussain M, Holz G. Exendin-4 as a stimulator of rat insulin I gene promoter activity via bZIP/CRE interactions sensitive to serine/threonine protein kinase inhibitor Ro 31-8220. Endocrinology 2002;143:2303–13.

    PubMed  CAS  Google Scholar 

  131. Xie T, Chen M, Zhang Q, Ma Z, Weinstein L. β-cell-specific deficiency of the stimulatory G protein α-subunit Gsα leads to reduced β-cell mass and insulin-deficient diabetes. Proc Natl Acad Sci U S A. 2007;104:19601–6.

    PubMed  CAS  Google Scholar 

  132. Elrick L, Docherty K. Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 2001;50:2244–52.

    PubMed  CAS  Google Scholar 

  133. Wang X, Zhou J, Doyle M, Egan J. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic β-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology 2001;142:1820–27.

    PubMed  CAS  Google Scholar 

  134. Song W, Schreiber W, Zhong E, Liu F, Kornfeld B, Wondisford F, Hussain M. Exendin-4 stimulation of cyclin A2 in β-cell proliferation. Diabetes 2008;57:2371–81.

    PubMed  CAS  Google Scholar 

  135. Kim S, Nian C, Widenmaier S, McIntosh C. Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol Cell Biol 2008;28:1644–56.

    PubMed  CAS  Google Scholar 

  136. Jansson D, Ng A, Fu A, Depatie C, Al Azzabi M, Screaton R. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci U S A 2008;105:10161–66.

    PubMed  Google Scholar 

  137. Jonas J, Laybutt D, Steil G, Trivedi N, Pertusa J, Van de Casteele M, Weir G, Henquin J. High glucose stimulates early response gene c-Myc expression in rat pancreatic beta cells. J Biol Chem 2001;276:35375–81.

    PubMed  CAS  Google Scholar 

  138. Susini S, Roche E, Prentki M, Schlegel W. Glucose and glucoincretin peptides synergize to induce c-fos, c-jun, junB, zif-268, and nur-77 gene expression in pancreatic beta(INS-1) cells. FASEB J 1998;12:1173–82.

    PubMed  CAS  Google Scholar 

  139. Glauser D, Brun T, Gauthier B, Schlegel W. Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol Biol 2007;8:54.

    PubMed  Google Scholar 

  140. Frödin M, Sekine N, Roche E, Filloux C, Prentki M, Wollheim C, Van Obberghen E. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem 1995;270:7882–89.

    PubMed  Google Scholar 

  141. Benes C, Roisin M, Van Tan H, Creuzet C, Miyazaki J, Fagard R. Rapid activation and nuclear translocation of mitogen-activated protein kinases in response to physiological concentration of glucose in the MIN6 pancreatic beta cell line. J Biol Chem 1998;273:15507–13.

    PubMed  CAS  Google Scholar 

  142. Benes C, Poitout V, Marie J, Martin-Perez J, Roisin M, Fagard R. Mode of regulation of the extracellular signal-regulated kinases in the pancreatic beta-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochem J 1999;340 (Pt 1):219–25.

    PubMed  CAS  Google Scholar 

  143. Gomez E, Pritchard C, Herbert T. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic β-cells. J Biol Chem 2002;277:48146–51.

    PubMed  CAS  Google Scholar 

  144. Ehses J, Pelech S, Pederson R, McIntosh C. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 2002;277:37088–97.

    PubMed  CAS  Google Scholar 

  145. Drucker D. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003;17:161–71.

    PubMed  CAS  Google Scholar 

  146. Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003;144:1444–55.

    PubMed  CAS  Google Scholar 

  147. Ehses J, Casilla V, Doty T, Pospisilik J, Winter K, Demuth H, Pederson R, McIntosh C. Glucose-dependent insulinotropic polypeptide promotes beta-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology 2003;144:4433–45.

    PubMed  CAS  Google Scholar 

  148. Ranta F, Avram D, Berchtold S, Düfer M, Drews G, Lang F, Ullrich S. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 2006;55:1380–90.

    PubMed  CAS  Google Scholar 

  149. Granata R, Settanni F, Biancone L, Trovato L, Nano R, Bertuzzi F, Destefanis S, Annunziata M, Martinetti M, Catapano F, Ghè C, Isgaard J, Papotti M, Ghigo E, Muccioli G. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3',5'-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 2007;148:512–29.

    PubMed  CAS  Google Scholar 

  150. Granata R, Settanni F, Gallo D, Trovato L, Biancone L, Cantaluppi V, Nano R, Annunziata M, Campiglia P, Arnoletti E, Ghè C, Volante M, Papotti M, Muccioli G, Ghigo E. Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function. Diabetes 2008;57:967–79.

    PubMed  CAS  Google Scholar 

  151. Ferdaoussi M, Abdelli S, Yang J, Cornu M, Niederhauser G, Favre D, Widmann C, Regazzi R, Thorens B, Waeber G, Abderrahmani A. Exendin-4 protects β-cells from interleukin-1 beta-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes 2008;57:1205–15.

    PubMed  CAS  Google Scholar 

  152. Loweth A, Williams G, Scarpello J, Morgan N. Heterotrimeric G-proteins are implicated in the regulation of apoptosis in pancreatic β-cells. Exp Cell Res 1996;229:69–76.

    PubMed  CAS  Google Scholar 

  153. Ahmad M, Abdel-Wahab YH, Tate R, Flatt PR, Pyne NJ, Furman BL. Effect of type-selective inhibitors on cyclic nucleotide phosphodiesterase activity and insulin secretion in the clonal insulin secreting cell line BRIN-BD11. Br J Pharmacol. 2000;129:1228–34.

    PubMed  CAS  Google Scholar 

  154. Andersen H, Mauricio D, Karlsen A, Mandrup-Poulsen T, Nielsen J, Nerup J. Interleukin-1 β-induced nitric oxide production from isolated rat islets is modulated by D-glucose and 3-isobutyl-1-methyl xanthine. Eur J Endocrinol 1996;134:251–9.

    PubMed  CAS  Google Scholar 

  155. Friedrichsen B, Neubauer N, Lee Y, Gram V, Blume N, Petersen J, Nielsen J, Møldrup A. Stimulation of pancreatic β-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 2006;188:481–92.

    PubMed  CAS  Google Scholar 

  156. Klinger S, Poussin C, Debril M, Dolci W, Halban P, Thorens B. Increasing GLP-1-induced β-cell proliferation by silencing the negative regulators of signaling cAMP response element modulator-alpha and DUSP14. Diabetes 2008;57:584–93.

    PubMed  CAS  Google Scholar 

  157. Kim M, Kang J, Park Y, Ryu G, Ko S, Jeong I, Koh K, Rhie D, Yoon S, Hahn S, Kim M, Jo Y. Exendin-4 induction of cyclin D1 expression in INS-1 β-cells: involvement of cAMP-responsive element. J Endocrinol 2006;188:623–33.

    PubMed  CAS  Google Scholar 

  158. Welters H, Kulkarni R. Wnt signaling: relevance to β-cell biology and diabetes. Trends Endocrinol Metab. 2008;349–55.

    Google Scholar 

  159. Liu Z, Habener J. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic β cell proliferation. J Biol Chem 2008;283:8723–35.

    PubMed  CAS  Google Scholar 

  160. Hii C, Howell S. Role of second messengers in the regulation of glucagon secretion from isolated rat islets of Langerhans. Mol Cell Endocrinol 1987;50:37–44.

    PubMed  CAS  Google Scholar 

  161. Ding W, Renström E, Rorsman P, Buschard K, Gromada J. Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat α-cells by a protein kinase A-mediated mechanism. Diabetes 1997;46:792–800.

    PubMed  CAS  Google Scholar 

  162. Dillon J, Lu M, Bowen S, Homan L. The recombinant rat glucagon-like peptide-1 receptor, expressed in an α-cell line, is coupled to adenylyl cyclase activation and intracellular calcium release. Exp Clin Endocrinol Diabetes 2005;113:182–9.

    PubMed  CAS  Google Scholar 

  163. Islam D, Zhang N, Wang P, Li H, Brubaker P, Gaisano H, Wang Q, Jin T. Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic α- and intestinal L-cell lines. Am J Physiol Endocrinol Metab 2009;296:E174–81.

    PubMed  CAS  Google Scholar 

  164. Dunning B, Foley J, Ahrén B. Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 2005;48:1700–13.

    PubMed  CAS  Google Scholar 

  165. Gromada J, Høy M, Buschard K, Salehi A, Rorsman P. Somatostatin inhibits exocytosis in rat pancreatic α-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J Physiol 2001;535:519–32.

    PubMed  CAS  Google Scholar 

  166. Gros L, Thorens B, Bataille D, Kervran A. Glucagon-like peptide-1-(7-36) amide, oxyntomodulin, and glucagon interact with a common receptor in a somatostatin-secreting cell line. Endocrinology. 1993;133:631–8.

    PubMed  CAS  Google Scholar 

  167. Fehmann H, Janssen M, Göke B. Interaction of glucagon-like peptide-I (GLP-I) and galanin in insulin (beta TC-1)- and somatostatin (RIN T3)-secreting cells and evidence that both peptides have no receptors on glucagon (INR1G9)-secreting cells. Acta Diabetol 1995;32:176–81.

    PubMed  CAS  Google Scholar 

  168. Patel Y, Papachristou D, Zingg H, Farkas E. Regulation of islet somatostatin secretion and gene expression: selective effects of adenosine 3',5'-monophosphate and phorbol esters in normal islets of Langerhans and in a somatostatin-producing rat islet clonal cell line 1027 B2. Endocrinology 1991;128:1754–62.

    PubMed  CAS  Google Scholar 

  169. Ma X, Zhang Y, Gromada J, Sewing S, Berggren P, Buschard K, Salehi A, Vikman J, Rorsman P, Eliasson L. Glucagon stimulates exocytosis in mouse and rat pancreatic α-cells by binding to glucagon receptors. Mol Endocrinol 2005;19:198–12.

    PubMed  CAS  Google Scholar 

  170. Gromada J, Bokvist K, Ding WG, Barg S, Buschard K, Renström E, Rorsman P. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 1997;110:217–28.

    PubMed  CAS  Google Scholar 

  171. Vieira E, Liu Y, Gylfe E. Involvement of alpha1 and beta-adrenoceptors in adrenaline stimulation of the glucagon-secreting mouse alpha-cell. Naunyn Schmiedebergs Arch Pharmacol 2004;369:179–83.

    PubMed  CAS  Google Scholar 

  172. Knudsen L, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra J, Holst J, Jeppesen C, Johnson M, de Jong J, Jorgensen A, Kercher T, Kostrowicki J, Madsen P, Olesen P, Petersen J, Poulsen F, Sidelmann U, Sturis J, Truesdale L, May J, Lau J. Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A 104: 2007;937–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Furman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Furman, B., Ong, W.K., Pyne, N.J. (2010). Cyclic AMP Signaling in Pancreatic Islets. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_13

Download citation

Publish with us

Policies and ethics