Skip to main content

Asexual Speciation

  • Chapter
  • First Online:
Lost Sex

Abstract

Population and evolutionary genetic theory shows that asexual organisms can undergo speciation to form inclusive populations that are independent arenas for the evolutionary processes of mutation, selection, and random drift; in other words, evolutionary species. Asexual speciation occurs when members of a species become physically isolated from each other for a long time or undergo divergent selection for adaptation to different niches. Such species form genotypic clusters separated by long-lasting gaps, as opposed to transient gaps due to random genetic drift. Species will often be phenotypic clusters as well, but these clusters may be cryptic; such cryptic species will be detectable only by genetic means. Our theoretical model of the nature and origin of species suggests two different methods of assigning individuals to species using gene sequence data. One combines population genetics and sampling theory to identify clusters that are separated by gaps too deep to be caused by drift. The other method uses the change in branching rates of lineages in a phylogenetic tree to detect the transition from between-species to within-species branching. These species criteria have been used to demonstrate that bdelloid rotifers and oribatid mites have undergone speciation; the two criteria show a reassuring amount of agreement in delimiting species. Not surprisingly, some of the resulting species are cryptic, not distinguishable by phenotype. At least some of these asexual species are adapted to different ecological niches. Our species concept and criteria can be used to test theories about the population genetics and evolutionary diversification of asexual organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

    Google Scholar 

  • Ayala FJ (1998) Is sex better? Parasites say no. Proc Natl Acad Sci USA 95: 3346–3348

    Article  CAS  PubMed  Google Scholar 

  • Barraclough TG, Burt A, Birky CW Jr (2003) Diversification in sexual and asexual organisms. Evolution 57: 2166–2172

    PubMed  Google Scholar 

  • Barraclough TG, Savolainen V (2001) Evolutionary rates and species diversity in flowering plants. Evolution 55: 677–683

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144: 427–437

    PubMed  Google Scholar 

  • Birky CW Jr, Wolf C, Maughan H, Herbertson L, Henry E (2005) Speciation and selection without sex. Hydrobiologia 546: 29–45

    Article  CAS  Google Scholar 

  • Cohan FM (2004) Concepts of bacterial biodiversity for the age of genomics. In: Fraser CM, Read T, Nelson KE (eds) Microbial Genomes. Humana Press, Totowa, NJ, pp. 175–194

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Ass., Sunderland, MA

    Google Scholar 

  • Eldredge N (1989) Macroevolutionary dynamics. McGraw-Hill, New York

    Google Scholar 

  • Fontaneto DEA, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG (2007). Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5: 1–8

    Article  Google Scholar 

  • Futuyma DJ (1987) On the role of species in Anagenesis. Am Nat 130: 465–473

    Article  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213

    Google Scholar 

  • Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 20: 392–402

    Article  CAS  PubMed  Google Scholar 

  • Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21: 447–450

    Article  PubMed  Google Scholar 

  • Hudson RR (1991) Gene genealogies and the coalescent process. Oxf Surv Evol Biol 7: 1–44

    Google Scholar 

  • Kondrashov AS (1982) Selection against harmful mutations in large sexual and asexual populations. Genet Res 40:325–332

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J, Szathmary E (1995) The major transitions in evolution. Freeman, New York

    Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the adh locus in Drosophila. Nature 351: 652–654

    Article  CAS  PubMed  Google Scholar 

  • Mergeay JD, Verschuren D, De Meester L (2006) Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. Proc R Soc Lond B 273: 2839–2844

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advantage. Mutat Res 1: 2–9

    Google Scholar 

  • Nee S (2001) Inferring speciation rates from phylogenies. Evolution 55: 661–668.

    Article  CAS  PubMed  Google Scholar 

  • Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans R Soc Lond B 344: 305–311

    Article  CAS  Google Scholar 

  • Ochman H, Lerat E, Daubin V (2005) Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA 102: 6595–6599

    Article  CAS  PubMed  Google Scholar 

  • Orr HA (2000) The rate of adaptation in asexuals. Genetics 155: 961–968

    CAS  PubMed  Google Scholar 

  • Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 2: 252–261

    Article  Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55: 1–15

    Article  Google Scholar 

  • Rosenberg NA (2003) The shapes of neutral gene genealogies in two species: Probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57: 1465–1477

    PubMed  Google Scholar 

  • Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3: 380–390

    Article  CAS  PubMed  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol Biol Evol 19: 101–109

    CAS  PubMed  Google Scholar 

  • Simpson GG (1951) The species concept. Evolution 5: 285–298

    Article  Google Scholar 

  • Team RDC (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing AD, Vienna, Austria

    Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25: 93–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. William Birky Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

William Birky, C., Barraclough, T.G. (2009). Asexual Speciation. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_10

Download citation

Publish with us

Policies and ethics