Skip to main content

Ethyl Carbamate in Foods and Beverages – A Review

  • Chapter
  • First Online:
Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 2))

Abstract

Foods and beverages contain many toxic chemicals that raise health concerns. Ethyl carbamate (EC) or urethane is the ethyl ester of carbamic acid. It occurs at low levels, from ng/L to mg/L, in many fermented foods and beverages. EC is genotoxic and carcinogenic for a number of species such as mice, rats, hamsters and monkeys. It has been classified as a group 2A carcinogen, “probably carcinogenic to humans”, by the World Health Organization’s International Agency for Research on Cancer (IARC) in 2007. The benchmark dose lower limit of EC is 0.3 mg/kg bw/day and the mean intake of EC from food is approximately 15 ng/kg bw/day. Those levels were calculated for relevant foods including bread, fermented milk products and soy sauce. Alcoholic beverages were not included in this calculation. However, high levels of EC can be found in distilled spirits at concentrations ranging from 0.01 mg/L to 12 mg/L depending on to the origin of spirit. Alcoholic drinks should thus be considered as a source of EC. EC is produced by several chemical mechanisms: first, from urea and various proteins like citrulline produced during the fermentation step, and second from cyanide and hydrocyanic acid, via EC precursors such as cyanate. A large panel of EC formation mechanisms is described from simple ethanolysis of urea in homogeneous liquid phase to photochemical oxidation of cyanide ion or complex heterogeneous gas/solid catalytic reactions. Determination of EC in foods and beverages involves various strategies according to the material, food or beverage, solid or liquid, and according to the concentration, from ng/L to mg/L. Usually adapted extractive techniques and pre-concentration steps are followed by analysis by gas chromatography coupled to mass spectrometry (GC-MS of GC-MS-MS). High-performance liquid chromatography (HPLC) and semi-quantitative spectroscopic methods (infra-red) are also proposed as valuable alternatives to the classical but time-consuming GC-MS. Various preventing methods are developed and used in some cases at industrial scale to lower EC levels in food. Two types of preventing methods are described. First, adapted and optimized practices in all steps of the chain of food (or beverages) production lead, in general, to low EC level. Secondly, the abatement of EC precursors can be done by adapted enzymatic, physical-chemical or chemical methods according to the nature of raw materials and conditions of their production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu SM, Alves A, Oliveira B, Herbert P (2005) Determination of ethyl carbamate in alcoholic beverages: an interlaboratory study to compare HPLC-FLD with GC-MS methods. Analytical and Bioanalytical Chemistry 382: 498–503.

    CAS  Google Scholar 

  • Agbor-Egbe T, Lape Mbome I (2006) The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis 19(4): 354–363.

    CAS  Google Scholar 

  • Arena ME, Saguir FM, Manca de Nadra MC (1999) Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine. International Journal of Food Microbiology 52(3): 155–161.

    PubMed  CAS  Google Scholar 

  • Aresta M, Boscolo M, Franco DW (2001) Copper (II) catalysis in cyanate conversion into ethyl carbamate in spirits, and relevant reactions. Journal of Agriculture and Food Chemistry 49(6): 2819–2824.

    CAS  Google Scholar 

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V (2007) Carcinogenicity of alcoholic beverages. The Lancet Oncology 8(4): 292–293.

    PubMed  Google Scholar 

  • Balcerek M, Szopa JS (2006) Ethyl carbamate content in fruit distillates. Zywnosc, Nauka, Technologia, Jakosc 1(46): 91–101

    Google Scholar 

  • Battaglia R, Conacher BS, Page BD (1990) Ethyl carbamate in alcoholic beverages and foods: a review. Food Additives and Contaminants 7(4): 477–496.

    PubMed  CAS  Google Scholar 

  • Beland FA, Benson WR, Mellick PW, Kovatch RM, Roberts DW, Fang J-L, Doerge DR (2005) Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food and Chemical Technology 43: 1–19.

    CAS  Google Scholar 

  • Bertrand A (1993) Le carbamate d’éthyle dans les eaux-de-vie de vin. In: R. Cantagrel (Ed.), Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris, pp. 278–289.

    Google Scholar 

  • Boulton R (1993) The formation of ethyl carbamate from isocyanate and ethanol at elevated temperature. In: R. Cantagrel (Ed.), Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris, p. 479.

    Google Scholar 

  • Bruno SNF, Vaitsman DS, Kunigami CN, Brasil MG (2007) Influence of the distillation processes from Rio de Janeiro in the ethyl carbamate formation in Brazilian sugar cane spirits. Food Chemistry 104(4): 1345–1352.

    CAS  Google Scholar 

  • Butzke CE, Bisson LF (1997) Ethyl Carbamate Preventative Action Manual, US Food and Drug Administration, Center for food safety and Applied nutrition Ethyl carbamate preventative action manual. US, Food and Drug Administration, Washington DC, USA.

    Google Scholar 

  • Canas BJ, Joe FL, Diachenko GW, Burns G (1994) Determination of ethyl carbamate in alcoholic beverages and soy sauce by gas chromatography with mass selective detection: Collaborative study. Journal of AOAC International 77: 1530–1536.

    PubMed  CAS  Google Scholar 

  • Canas BJ, Diachenko GW, Nyman PJ (1997) Ethyl carbamate levels resulting from azodicarbonamide use in bread. Food Additives and Contaminants. 14(1): 89–94.

    PubMed  CAS  Google Scholar 

  • Cameán AM, Moreno I, López-Artíguez M, Repetto M, González AG (2001) Differentiation of Spanish brandies according to their metal content. Talanta 54(1): 53–59.

    PubMed  Google Scholar 

  • Cardoso AP, Mirione E, Ernesto M, Massaza F, Cliff J, Rezaul Haque M, Bradbury JH (2005) Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis 18(5): 451–460.

    CAS  Google Scholar 

  • Carley AF, Chinn M, Parkinson C (2003) Adsorption and reaction of CN + O = OCN on Cu(100) surface: a density functional theory study. Surface Science 537: 64–74.

    CAS  Google Scholar 

  • Cha SW, Gu HK, Lee KP, Lee MH, Han SS, Jeong TC (2000) Immunotoxicity of ethyl carbamate in female BALB/c mice: role of esterase and cytochrome P450. Toxicology Letters 115(3): 173–181.

    PubMed  CAS  Google Scholar 

  • Christoph N, Schmitt A, Hillenbrand K (1988) Ethylcarbamat in Obstbranntwein. Alkohol Industrie, 16: 369–374.

    Google Scholar 

  • Cipollone R., Ascenzi P., Frangipani E., Visca P. (2006) Cyanide detoxification by recombinant bacterial rhodanese. Chemosphere 63: 942–949.

    PubMed  CAS  Google Scholar 

  • Delledonne D, Rivetti F, Romano U (2001) Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General 221(1–2): 241–251.

    CAS  Google Scholar 

  • Dennis MJ, Howarth N, Key PE, Massey RC (1986) Investigation of ethyl carbomate levels in some fermentated foods and alcoholic beverages. Food Additives and Contaminants 6: 383–389.

    Google Scholar 

  • Dennis MJ, Massey RC, Ginn R, Wiletts P, Crews C, Parker I (1997) The contribution of azodicarbonamide to ethyl carbamate formation in bread and beer. Food additives and contaminants 14(1): 101–108.

    PubMed  CAS  Google Scholar 

  • Dijkstra ZJ, Doornbos AR, Weyten H, Ernsting JM, Elsevier CJ, Keurentjes JTF (2007) Formation of carbamic acid in organic solvents and in supercritical carbon dioxide. The Journal of Supercritical Fluids 41(1): 109–114.

    CAS  Google Scholar 

  • EFSA (2007) Ethyl carbamate and hydrocyanic acid in food and beverages. Scientific Opinion of the Panel on Contaminants. The EFSA Journal 551: 1–44.

    Google Scholar 

  • Eicher R, Bouchard E, Tremblay A (1999) Cow level sampling factors affecting analysis and interpretation of milk urea concentrations in 2 dairy herds. Canadian Veterinary Journal 40(7): 487–492.

    CAS  Google Scholar 

  • EUROPEAN COMMISSION HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL Directorate C – Scientific Opinions (2003) C2 – Management of scientific committees: scientific co-operation and networks. Scientific Committee on Food SCF/CS/PM/GEN/M95 Final Opinion of the Scientific Committee on Food on the 23rd additional list of monomers and additives for food contact materials.

    Google Scholar 

  • Fidaleo M., Esti M., Moresi M. (2006) Assessment of urea degradation rate in model wine solutions by acid urease from Lactobacillus fermentum. Journal of Agricultural and Food Chemistry 54: 6226–6235.

    PubMed  CAS  Google Scholar 

  • Food Standards – Australia New Zealand (2007), Ethyl Carbamate in Australian foods.

    Google Scholar 

  • Fox NJ, Stachowiak GW (2007) Vegetable oil-based lubricants—A review of oxidation. Tribology International 40(7): 1035–1046.

    Google Scholar 

  • Francis PS, Lewis SW, Lim KF (2002) Analytical methodology for the determination of urea: current practice and future trends. Trends in Analytical Chemistry 21(5): 389–400.

    CAS  Google Scholar 

  • Gotor V (1999) Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases. Bioorganic & Medicinal Chemistry 7(10): 2189–2197.

    CAS  Google Scholar 

  • Guerain J, Leblond N (1993) Formation du carbamate d’éthyle et élimination de l’acide cyanhydrique des eaux-de-vie de fruits à noyaux. In: R. Cantagrel (Ed.), Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris, pp. 330–338.

    Google Scholar 

  • Ha MS, Kwon KS, Kim M, Hee RP, Soo JH, Lee H, Kim KM, Ko EJ, Ha SD, Bae DH (2006) Exposure assessment of ethyl carbamate in alcoholic beverages. Journal of microbiology and biotechnology 16(3): 480–483.

    CAS  Google Scholar 

  • Haddow A, Sexton W (1946) Influence of carbamic esters (urethanes) on experimental animal tumors. Nature 157: 500–503.

    CAS  Google Scholar 

  • Hamlet CG, Jayaratne SM, Morrison C (2005) Application of positive ion chemical ionisation and tandem mass spectrometry combined with gas chromatography to the trace level analysis of ethyl carbamate in bread. Rapid Communication in Mass Spectrometry 19(16): 2235–2243.

    CAS  Google Scholar 

  • Hasnip S, Crews C, Potter N, Christy J, Chan D, Bondu T, Matthews W, Walters B, Patel K (2007) Survey of ethyl carbamate in fermented foods sold in the United Kingdom in 2004. Agricultural and Food Chemistry 55: 2755–2759.

    CAS  Google Scholar 

  • Herbert P, Santos L, Barros P, Alves A (2002) A New HPLC method to determine ethyl carbamate in alcoholic beverages using fluorescence detection. Journal of Food Science 67: 1616–1620.

    CAS  Google Scholar 

  • Hesford F, Schneider K (2001) Validation of a simple method for the determination of ethyl carbamate in stone fruit brandies by GC-MS. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 92(3): 250–259.

    CAS  Google Scholar 

  • Himberg K, Sippola E, Riekkola M (1989) Multidimentional gas chromatography: State of the art, A. J. Microcolumn Sep., 1(6): 271–277.

    CAS  Google Scholar 

  • Hirakawa K, Midorikawa K, Oikawa S, Kawanishi (2003) Carcinogenic semicarbazide induces sequence-specific DNA damage through the generation of reactive oxygen species and the derived organic radicals. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 536(1–2): 91–101.

    CAS  Google Scholar 

  • Holland JR, Hosley H, Scharlau C, Carbone PP, Frei E, Brindley CO, Hall TC, Shnider BI, Gold GL, Lasagna L, Owens AH, Miller SP (1966) A controlled trial of urethane treatment in multiple myeloma. Blood 27(3): 328–342.

    PubMed  CAS  Google Scholar 

  • IARC (1974) Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. Some Antithyroid and related Substances, Nitrofurans and Industrial Chemicals, vol. 7, International Agency for Research on Cancer, Lyon, pp. 111–140.

    Google Scholar 

  • Jagerdeo E, Dugar S, Foster GD, Schenk H (2002) Analysis of ethyl carbomate in wines using solid-phase extraction and multidimesional gas chromatography/ mass spectrometry. Journal of Agriculture and Food Chemistry 50: 5797–5802.

    CAS  Google Scholar 

  • Joint FAO/WHO FOOD STANDARDS Programme (2007) CODEX COMMITTEE ON CONTAMINANTS IN FOODS, Beijing, China, 16–20 April 2007.

    Google Scholar 

  • Kim Y-KL, Koh E, Chung H-J, Kwon H (2000) Determination of ethyl carbamate in some fermented Korean foods and beverages. Food Additives and Contaminants, 17(6): 469–475.

    PubMed  CAS  Google Scholar 

  • Kitamoto K, Oda K, Gomi K, Takahashi K (1991) Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Applied and Environmental Microbiology 57(1): 301–306.

    PubMed  CAS  Google Scholar 

  • Kitamoto K, Oda-Miyazaki K, Gomi K, Kumagai C (1993) Mutant isolation of non-urea producing sake yeast by positive selection. Journal of Fermentation and Bioengineering 75(5): 359–363.

    CAS  Google Scholar 

  • Kogyo KH (2002) Mixed fruit juice alcoholic beverage production – including removing copper by treating with substance binding with copper or absorbing copper, Patent number: JP3310382-B2.

    Google Scholar 

  • Krock KA, Wilkins CL (1994) Resent advances in multidimentional gas chromatography. Trends in Analytical Chemistry 13(1): 13–17.

    CAS  Google Scholar 

  • Lachenmeier DW (2005) Rapid screening for ethyl carbamate in stone-fruit spirits using FTIR spectroscopy and chemometrics. Analytical and Bioanalytical Chemistry 382(6): 1407–1412.

    PubMed  CAS  Google Scholar 

  • Lachenmeier DW, Frank W, Kuballa T (2005a) Application of tandem mass spectrometry combined with gas chromatography to the routine analysis of ethyl carbomate in stone-fruit spirits. Rapid Communication in Mass Spectrometry 19: 108–112.

    CAS  Google Scholar 

  • Lachenmeier DW, Schehl B, Kuballa T, Fank W, Senn T (2005b) Retrospective trends and current status of ethyl carbamate in German stone-fruit spirits. Food Additives and Contaminants: Analysis, Surveillance, Evaluation, Control 22(5): 397–405.

    CAS  Google Scholar 

  • Lachenmeier DW, Nerlich U, Kuballa T (2006) Automated determination of ethyl carbamate in stone-fruit spirits using headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry. Journal of Chromatography A, (1108): 116–120.

    Google Scholar 

  • Larsen JC (2006) Risk assessment of chemicals in European traditional foods. Trends in Food Science & Technology 17(9): 471–481.

    CAS  Google Scholar 

  • Laugel P, Bindler F (1993) Le carbamate d’éthyle dans les eaux-de-vie de fruits à noyaux. In R. Cantagrel (Ed.), Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier, pp. 290–295.

    Google Scholar 

  • Lurton L, Vidal JP, Estreguil S, Cantagrel R (1993) Comportement du carbamate d’éthyle lors de la distillation des vins pour l’obtention des eaux-de-vie de Cognac. In: R. Cantagrel (Ed.), Élaboration et Connaissance des Spiritueux, Recherche de la qualité, tradition et innovation, BNIC, diffusion Tec et Doc Lavoisier Paris, pp. 344–349.

    Google Scholar 

  • Ma Y-P, Deng F-Q, Chen D-Z, Sun S-W (1995) Determination of ethyl carbamate in alcoholic beverages by capillary multi-dimensional gas chromatography with thermionic specific detection. Journal of Chromatography A, 695: 259–265.

    CAS  Google Scholar 

  • MacKenzie W, Clyne AH, MacDonald LS (1990) Ethyl carbamate formation in grain based spirits. Part II. The identification and determination of cyanide related species involved in ethyl carbamate formation in Scotch grain whisky. Journal of the Institute of Brewing 96(4): 223–232.

    CAS  Google Scholar 

  • Madrera RR, Suârez VB (2009) Determination of ethyl carbamate in cider spirits by HPLC-FLD, Food Control 20(2): 139–143.

    CAS  Google Scholar 

  • Matsudo T, Aoki T, Abe K, Fukuta N, Higuchi T, Sasaki M, Uchida K (1993) Determination of ethyl carbamate in soy sauce and its possible precursor. Journal of Agricultural and Food Chemistry 41(3): 352–356.

    CAS  Google Scholar 

  • Mira de Orduña R, Liu S-Q, Patchett ML, Pilone GJ (2000) Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiology Letters 183(1): 31–35.

    Article  PubMed  Google Scholar 

  • Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T (1999) Purification, characterization, and application of an acid urease from Arthrobacter mobilis. Journal of Biotechnology 68(2–3): 227–236.

    PubMed  CAS  Google Scholar 

  • Mulder PPJ, Beumer B, Van Rhijn JA (2007) The determination of biurea: A novel method to discriminate between nitrofurazone and azodicarbonamide use in food products. Analytica Chimica Acta 586(1–2): 366–373.

    PubMed  CAS  Google Scholar 

  • Muñoz F, Schuchmann MN, Olbrich G, von Sonntag C (2000) Common intermediates in the OH-radical-induced oxidation of cyanide and formamide. J. Chem. Soc., Perkin Trans. 2: 655–659.

    Google Scholar 

  • Nettleship A, Henshaw PS, Meyer HL (1943) Induction of pulmonary tumors in mice with ethyl carbamate. J. Nat. Cancer Inst. 4: 309–331.

    CAS  Google Scholar 

  • Neves EA, Oliveira A, Fernandes AP, Nobrega JA (2007) Simple and efficient elimination of copper(II) in sugar-cane spirits. Food Chemistry 101(1): 33–36.

    CAS  Google Scholar 

  • O’Brien J, Renwick AG, Constable A, Dybing E, Müller DJG, Schlatter J, Slob W, Tueting W, van Benthem J, Williams GM, Wolfreys A (2006) Approaches to the risk assessment of genotoxic carcinogens in food: A critical appraisal. Food and Chemical Toxicology 44(10): 1613–1635.

    PubMed  Google Scholar 

  • Office fédéral de la santé publique Suisse (juin 2003) Rapport annuel 2002 sur la sûreté alimentaire.

    Google Scholar 

  • Ough CS (1976a) Ethylcarbamate in Fermented Beverages and Foods. I Naturally Occuring Ethylcarbamate. Journal of Agricultural and Food Chemistry 24(2): 323–328.

    PubMed  CAS  Google Scholar 

  • Ough CS (1976b) Ethylcarbamate in fermented beverages and foods. II Possible formation of ethylcarbamate from diethyl dicarbonate addition to wine. J. Agric. Food Chem. 24(2): 328–331.

    PubMed  CAS  Google Scholar 

  • Ough CS, Huang Z, An D, Stevens D (1991) Amino acid uptake by 4 commercial yeasts at different temperatures of growth and fermentation – effects of urea excretion and reabsorption. American Journal of Oenology and Viticulture 42(1): 26–40.

    CAS  Google Scholar 

  • Park KK, Liem A, Stewart BC, Miller JA (1993) Vinyl carbamate epoxide, a major strong electrophilic, mutagenic and carcinogenic metabolite of vinyl carbamate and ethyl carbamate (urethane). Carcinogenesis 14: 441–450.

    PubMed  CAS  Google Scholar 

  • Park SK, Kim CT, Lee JW, Jhee OH, Om AS, Kang JS, Moon TW (2007) Analysis of ethyl carbamate in Korean soy sauce using high-performance liquid chromatography with fluorescence detection or tandem mass spectrometry and gas chromatography with mass spectrometry. Food Control 18(8): 975–982.

    CAS  Google Scholar 

  • Paterson E, Haddon A, Thomas IA, Watkinson JM (1946) Leukemia treated with urethane compared to deep X-ray therapy. Lancet I: 677–683.

    Google Scholar 

  • Paton GI, Palmer G, Kindness A, Campbell C, Glover LA, Killham K (1995) Use of luminescence-marked bacteria to assess copper bioavailability in malt whisky distillery effluent. Chemosphere 31(5): 3217–3224.

    CAS  Google Scholar 

  • Pawliszyn J (1997) Solid Phase Micro-extraction Theory and Practice. Wiley-VCH, New York.

    Google Scholar 

  • Pawliszyn J (2000) Theory of solid phase micro-extraction. Journal of Chromatographic Science 38: 270–278.

    PubMed  CAS  Google Scholar 

  • Pedraza-Avella JA, Acevedo-Peña P, Pedraza-Rosas JE (2008) Photocatalytic oxidation of cyanide on TiO2: An electrochemical approach. Catalysis Today 133–135: 611–618.

    Google Scholar 

  • Reaves GA, Berrow ML (1984) Total copper contents of Scottish soils. European Journal of Soil Science 35(4): 583–592.

    CAS  Google Scholar 

  • Rezaul Haque M, Bradbury JH (2002) Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chemistry 77(1): 107–114.

    CAS  Google Scholar 

  • Riffikin HL, Wilson R, Howie D, Müller S (1989) Ethyl Carbamate formation in the production of pot still whisky. J. Inst. Brew 95: 115–119.

    Google Scholar 

  • Sarla M, Pandit M, Tyagi DK, Kapoor JC (2004) Oxidation of cyanide in aqueous solution by chemical and photochemical process. Journal of Hazardous Materials 116(1–2): 49–56.

    PubMed  CAS  Google Scholar 

  • Saidu Y (2004) Physicochemical features of rhodanese: A review. African Journal of Biotechnology 3(4): 370–374.

    CAS  Google Scholar 

  • Sakano K, Oikawa S, Hiraku Y, Kawanishi S (2002) Metabolism of carcinogenic urethane to nitric oxide is involved in oxidative DNA damage. Free Radical Biology and Medicine 33(5): 703–714.

    PubMed  CAS  Google Scholar 

  • Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 424: 131–142.

    CAS  Google Scholar 

  • Schaefer A, Küchler T, Simat TJ, Steinhart H (2003) Migration of lubricants from food packagings: Screening for lipid classes and quantitative estimation using normal-phase liquid chromatographic separation with evaporative light scattering detection. Journal of Chromatography A 1017(1–2): 107–116.

    PubMed  CAS  Google Scholar 

  • Schehl B, Lachenmeier D, Senn T, Heinisch JJ (2005) Effect of the stone content on the quality of plum and cherry spirits produced from mash fermentations with commercial and laboratory yeast strains. Journal of Agricultural and Food Chemistry 53: 8230–8238.

    PubMed  CAS  Google Scholar 

  • Schlatter J, Lutz WK (1990) The carcinogenic potential of ethyl carbamate (urethane): Risk assessment at human dietary exposure levels. Food and Chemical Toxicology 28(3): 205–211.

    PubMed  CAS  Google Scholar 

  • Schliessmann Kellerei-chemie, Kurzbeschreibung des CYANUREX® Verfahrens – stand 03/2007.

    Google Scholar 

  • Schomburg G (1995) Two-dimensional gas chromatography: principles, instrumentation, methods. Journal of Chromatography A, 703: 309–325.

    CAS  Google Scholar 

  • Sen NP, Seaman SW, Weber D (1992) A method for the determination of methyl carbamate and ethyl carbamate in wines. Food Additives and Contaminants 9(2): 149–160.

    PubMed  CAS  Google Scholar 

  • Sen NP, Seaman SW, Boyle M, Weber D (1993) Methyl carbamate and ethyl carbamate in alcoholic beverages and other fermented foods. Food Chemistry 48(4): 359–366.

    CAS  Google Scholar 

  • Shuguang L, Gibb SW (2008) Copper removal from wastewater using spent-grain as biosorbent. Bioresource Technology 99(6): 1509–1517.

    Google Scholar 

  • Stevens DF, Ough CS (1993) Ethyl Carbamate Formation: Reaction of Urea and Citrulline with Ethanol in Wine Under Low to Normal Temperature Conditions. American Journal of Enology and Viticulture 44: 309–312.

    CAS  Google Scholar 

  • De Stefani E, Boffetta P, Deneo-Pellegrini H, Ronco AL, Acosta G, Ferro G, Oreggia F, Leiva J (2007) The effect of smoking and drinking in oral and pharyngeal cancers: A case–control study in Uruguay. Cancer Letters 246(1–2): 282–289.

    PubMed  Google Scholar 

  • Stodolak B, Starzyńska A, Czyszczoń M, Żyła K (2007) The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chemistry 101(3): 1041–1045.

    CAS  Google Scholar 

  • Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Accounts of Chemical Research 35(9): 706–716.

    PubMed  CAS  Google Scholar 

  • Uthurry CA, Varela F, Colomo B, Suarez Lepe JA, Lombardero J, Garcia del Hierro JR (2004) Ethyl carbamate concentrations of typical Spanish red wines. Food Chemistry 88: 329–336.

    CAS  Google Scholar 

  • Uthurry CA, Suárez Lepe JA, Lombardero J, García Del Hierro JR (2006) Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chemistry 9(2): 262–270.

    Google Scholar 

  • University of California (2003) Irvine Guidelines for Selection and Use of Anesthetics and Sedatives.

    Google Scholar 

  • Vahl M (1993) A survey of ethyl carbamate in beverages, bread and acidified milks sold in Denmark. Food Additives and Contaminants 10(5): 585–592.

    PubMed  CAS  Google Scholar 

  • Valero E, Mauricio JC, Milan MC, Ortega JM (1999) Changes in the urea content of wine under different fermentation and aging conditions by two Saccharomyces cerevisae races. Biotechnology Letters 21(6): 555–559.

    CAS  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38: 11–36.

    PubMed  CAS  Google Scholar 

  • Wang D, Yang B, Zhai X, Zhou L (2007) Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Processing Technology 88(8): 807–812.

    CAS  Google Scholar 

  • Woo I-S, Kim I-HM, Yun U-J, Chung S-K, Rhee I-K, Choi S-W et al. (2001) An improved method for determination of ethyl carbamate in Korean traditional rice wine. Journal of Industrial Microbiology and Biotechnology 26: 363–368.

    PubMed  CAS  Google Scholar 

  • Wucherpfenning K (1992) Removing iron and copper ions out of beverages by means of selective complexing agents. Part 2. Factors affecting heavy-metal bonding to chelon resins. Deutsche Lebensmittel-Rundschau 88(10): 313–317.

    Google Scholar 

  • Yang H, Whitten JL (1998) Reaction and adsorption energetics of CN+O→OCN on nickel. Journal of Molecular Structure: THEOCHEM 458(1–2): 131–142.

    Google Scholar 

  • Zotta T, Ricciardi A, Parente E (2007) Enzymatic activities of lactic acid bacteria isolated from cornetto di matera sourdoughs. International Journal of Food microbiology 115: 165–172.

    PubMed  CAS  Google Scholar 

  • Zietsman A, Viljoen M, van Vuuren H (2000) Preventing ethyl carbamate formation in wine. WineLand South Africa (12): 83–85.

    Google Scholar 

  • Zimmerli B, Schlatter J (1991) Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutation Research 259(3–4): 325–350.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the support of the Université Paul Verlaine-Metz, the AREFE (station d’expérimentation fruitière) and the Syndicat lorrain des bouilleurs et distillateurs d’eaux-de-vie de fruits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weber, J.V., Sharypov, V.I. (2009). Ethyl Carbamate in Foods and Beverages – A Review. In: Lichtfouse, E. (eds) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Sustainable Agriculture Reviews, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2716-0_15

Download citation

Publish with us

Policies and ethics