Skip to main content

Moisture Pattern During the Last Glacial Maximum in South America

  • Chapter
  • First Online:
Past Climate Variability in South America and Surrounding Regions

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 14))

Abstract

The Last Glacial Maximum (LGM) is still an exciting period of time for investigating ecosystem responses to climate changes since it corresponds to a steady state in a glacial world with maximum global expansion of ice-sheets, CO2 concentrations half those of today, temperatures up to 5°C cooler in the tropical lowlands, and precipitation regimes differed from today. South America is an ideal place to study these changes since climatic conditions during the LGM remain a matter of debate. There is general agreement that the temperature was cooler than today, but there is no consensus about moisture conditions, especially over tropical latitudes. This paper reviews terrestrial and near-shore marine records from South America between 10°N and 50°S during the LGM. Records are selected for their chronological control, their continuity around the LGM and their regional representativeness.

This review aims to show how regional climates of the sub-continent have responded to orbital forcing as opposed to other global glacial boundary conditions, and how they are related to positions of the Intertropical Convergence Zone (ITCZ) and of the westerly belt. A clear pattern emerges for the northern and the southern latitudes, which were respectively drier and wetter, but in the tropical lowlands the pattern remains unclear. The characterization of this area is of particular interest because of the central role played by atmospheric convection centred on the Amazon basin. Modeling experiments argue for drier LGM tropical conditions but several lines of evidence contradict these results. Currently, moister conditions are explained by a glacial boundary forcing mechanism implying a southern shift of the ITCZ and a reinforcement of the South American summer monsoon (SASM), bringing more humidity to the tropical Andes as far as southern Brazil. This hypothesis may explain a large portion of the ecosystem responses during the LGM, but does not account for all observed changes. Paucity of site reconstructions (e.g. in the Amazon basin), and lack of quantitative paleoclimatic responses derived from proxies to environmental conditions could partly explain the observed discrepancies. Regional responses of mosaic environmental ecosystems to a generally cooler temperature could be involved, without any need to invoke precessionnal and extra-tropical influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absy ML, Cleef A, Fournier M et al (1991) Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de l’Amazonie au cours des 60 000 dernières années. Première comparaison avec d’autres régions tropicales. Comptes Rendus Académie des Sciences Paris 312:673–678

    Google Scholar 

  • Alley RB (2004) GISP2 Ice Core Temperature and Accumulation Data. IGBP PAGES/World Data Center-A for Palaeoclimatology, Data Contribution Series #2004-01, NOAA/NGDC Palaeoclimatology Program, Boulder CO, USA

    Google Scholar 

  • Ammann C, Jenny B, Kammer K, Messerli B (2001) Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29°S). Palaeogeogr Palaeoclimatol Palaeoecol 172:313–326

    Google Scholar 

  • Arz HW, Patzold J, Wefer G (1998) Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from Last-Glacial marine deposits off Northeastern Brazil. Quat Res 50:157–166

    Google Scholar 

  • Arz HW, Patzold J, Wefer G (1999) The deglacial history of the western tropical Atlantic as inferred from high resolution stable isotope records off northeastern Brazil. Earth Planet Sci Lett 167:105–117

    Google Scholar 

  • Auler AS, Smart PL (2001) Late Quaternary paleoclimate in semiarid Northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat Res 55:159–167

    Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC et al (2001a) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO et al (2001b) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698–700

    Google Scholar 

  • Bard E, Arnold M, Hamelin B et al (1998) Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals. An updated data base including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40:1085–1092

    Google Scholar 

  • Bard E, Rostek F, Turon JL, Gendreau S (2000) Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289:1321–132

    Google Scholar 

  • Barros V, Gonzales M, Liebman B, Camilloni I (2000) Influence of the South Atlantic convergence zone and South Atlantic sea surface temperature on interannual summer rainfall variability in Southeastern South America. Theor Appl Climatol 67:123–133

    Google Scholar 

  • Barros V, Doyle M, González M et al. (2002) Climate variability over subtropical South America and the South American monsoon: a review. Meteorological 27:33–58

    Google Scholar 

  • Behling H, Arz HW, Pätzold J, Wefer G. (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quat Sci Rev 19:981–994

    Google Scholar 

  • Behling H, Hooghiemstra H (2001) Neotropical savanna environments in space and time: Late Quaternary interhemispheric comparisons. In: Markgraf V (ed) Interhemispheric Climate Linkages, Academic Press, San Diego

    Google Scholar 

  • Behling H (2002) South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27

    Google Scholar 

  • Behling H, Arz HW, Pätzold J, Wefer G (2002) Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeogr Palaeoclimatol Palaeoecol 179:227–243

    Google Scholar 

  • Betancourt JL, Latorre C, Rech JA, Quade J, Rylander KA (2000) A 22,000-Year record of monsoonal precipitation from Northern Chile’s Atacama desert. Science 289:1542–1546

    Google Scholar 

  • Bobst AL, Lowenstein TK, Jordan TE et al (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 173:21–42

    Google Scholar 

  • Bradbury JP (1997) Sources of glacial moisture in Mesoamerica. Quat Int 43/44:97–110

    Google Scholar 

  • Bradbury JP, Grosjean M, Stine S, Sylvestre F (2001) Full and Late Glacial lake records along the PEP1 transect: their role in developing interhemispheric paleoclimate interactions. In: Markgraf V (ed.) Interhemispheric Climate Linkages, Academic Press, San Diego

    Google Scholar 

  • Bush ABG, Philander SGH (1998) The role of ocean-atmosphere interactions in Tropical cooling during the Last Glacial maximum. Science 279:1341–1344

    Google Scholar 

  • Bush MB, Colinvaux PA (1990) A long record of climatic and vegetation change in lowland Panama. J Veg Sci 1:105–119

    Google Scholar 

  • Bush MB, Miller MC, De Oliveira PE, Colinvaux PA (2002) Orbital forcing signal in sediments of two Amazonian lakes. J Paleolimnol 27:341–352

    Google Scholar 

  • Bush MB, Correa-Metrio A, Hodell DA et al (2009) Re-evaluation of climate change in Lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala. In: Vimeux F, Sylvestre F, Khodri M (eds) Developments in paleoenvironmental research. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Burbridge RE, Mayle FE, Killeen TJ (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat Res 61:215–230

    Google Scholar 

  • Cane MA (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 230:227–240

    Google Scholar 

  • Chappellaz J, Blunier T, Raynaud D et al (1993) Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366:443–445

    Google Scholar 

  • Chiang JCH, Biasutti M, Battisti DS (2003) Sensitivity of the Atlantic ITCZ to conditions during Last Glacial Maximum. Paleoceanography 18:doi:10.1029/2003PA000916

    Google Scholar 

  • Chiang JCH, Bitz M (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496

    Google Scholar 

  • Clapperton CM (1993) Quaternary and Geomorphology of South America. Elsevier Science, Amsterdam, 779 pp

    Google Scholar 

  • Claussen M, Ganopolski A, Brovkin V et al (2003) Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events. Clim Dyn 21:361–370

    Google Scholar 

  • Clement AC, Hall A, Broccoli AJ (2004) The importance of precessional signals in the tropical climate. Clim Dyn 22:327–341

    Google Scholar 

  • CLIMAP Project members (1981) Seasonal reconstructions of Earth’s surface at last glacial maximum. Geological Society of America, Map and Chart Series, C-36, 18 pp.

    Google Scholar 

  • COHMAP (1988) Climatic changes of last 18,000 years: observations and model simulations. Science 241:1043–1052

    Google Scholar 

  • Colinvaux PA, De Oliveira PE, Moreno JE et al (1996) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88

    Google Scholar 

  • Colinvaux PA, De Oliveira PE, Bush MB (2000) Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169

    Google Scholar 

  • Cook KH, Vizy EK (2006) South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon. J Geophys Res – Atmos 111 D02110. doi:10.1029/2005JD005980

    Google Scholar 

  • Cruz FWJ, Burns SJ, Karmann I et al (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66

    Google Scholar 

  • Cruz FWJ, Burns SJ, Karmann I et al (2006a) A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quat Sci Rev 25:2749–2761

    Google Scholar 

  • Cruz FWJ, Burns SJ, Karmann I et al (2006b) Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet Sci Lett 248:494–506

    Google Scholar 

  • Cruz FW, Wang X, Aulter A, et al (2009) Orbital and millenial-scale precipitation change in Brazil from speleothem records. In: Vimeux F, Sylvestre F, Khodri M (eds) Developement in Paleoenvironmental Research. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • DeOliveira PE (1992) A palynological record of late Quaternary vegetational and climatic change in southeastern Brazil. Ph.D thesis. The Ohio State University, Columbus, 238 pp.

    Google Scholar 

  • Farrera I, Harrison SP, Prentice IC et al (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dyn 15:823–856

    Google Scholar 

  • Fritz SC, Baker PA, Seltzer GO et al (2007) Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quat Res 68:410–420

    Google Scholar 

  • Galloway RW, Markgraf V, Bradbury JP (1988) Dating shorelines of lakes in Patagonia, Argentina. J South Amer Earth Sci 1:195–198

    Google Scholar 

  • Garcin Y, Williamson D, Taieb M, et al (2006) Centennial to millennial changes in maar-lake deposition during the last 45,000 years in tropical Southern Africa (Lake Masoko, Tanzania). Palaeogeogr Palaeoclimatol Palaeoecol 239:334–354

    Google Scholar 

  • Garreaud RD (2000) Cold air incursions over subtropical South America: mean structure and dynamics. Mon Weather Rev 128:2544–2559

    Google Scholar 

  • Garreaud RD, Wallace JM (1998) Summertime incursions of mid-latitude air into tropical and subtropical South America. Mon Weather Rev 126:2713–2733

    Google Scholar 

  • Garreaud RD, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J. Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol, in press

    Google Scholar 

  • Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum - a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869–896

    Google Scholar 

  • Geyh MA, Grosjean M, Nunez L, Schotterer U (1999) Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama desert (Northern Chile). Quat Res 52:143–153

    Google Scholar 

  • González MA (1994) Salinas del Bebedero Basin (República Argentina). In: Kelts K, Gierlowski-Cordesch E (eds.) Global Inventory of Lake Basins. Cambridge University Press

    Google Scholar 

  • Grosjean M. (1994) Paleohydrology of the laguna Lejía (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeogr Palaeoclimatol Palaeoecol 109:89–100.

    Google Scholar 

  • Grosjean M, van Leeuwen JFN, van der Knaap WO et al (2001) A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Glob Planet Change 28:35–51

    Google Scholar 

  • Haberle SG, Maslin MA (1999) Late Quaternary vegetation and climate change in the Amazon based on a 50,000 year pollen record from the Amazon fan, ODP Site 932. Quat Res 51: 27–38

    Google Scholar 

  • Haug GH, Hughen, KA, Sigman DM et al (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1304–1308

    Google Scholar 

  • Heine K. (2000) Tropical South America during the Last Glacial Maximum: evidence from glacial, periglacial and fluvial records. Quat Int:72, 7–21

    Google Scholar 

  • Heusser CJ (1974) Vegetation and climate of the southern Chilean lake district during and since the last Interglaciation. Quat Res 4:190–315

    Google Scholar 

  • Heusser CJ (1981) Palynology of the last interglacial–glacial cycle in mid-latitudes in central Chile. Quat Res 16:293–321

    Google Scholar 

  • Heusser CJ (1989) Southern Westerlies during the Last Glacial Maximum. Quat Res 31:423–425

    Google Scholar 

  • Heusser CJ., Lowell TV, Heusser LE et al (1996) Full-glacial-lateglacial palaeoclimate of the Southern Andes: evidence from pollen, beetle, and glacial records. J Quat Sci 11:173–184

    Google Scholar 

  • Heusser LE, Shackelton NJ (1994) Tropical climatic variation on the Pacific slopes of the Ecuadorian Andes based on a 25,000-year pollen record from deep-sea sediment core Tri 163–31B. Quat Res 42:222–225

    Google Scholar 

  • Hodell DA, Anselmetti F, Ariztegui D et al (2008) An 85-ka record of climate change in Lowland Central America. Quat Sci Rev 27:1152–1165

    Google Scholar 

  • Hoffmann G. (2003). Taking the pulse of the tropical water cycle. Science 301:776–777.

    Google Scholar 

  • Hoganson JW, Ashworth AC (1992) Fossil beetle evidence for climatic change 18,000–10,000 years B.P. in South-Central Chile. Quat Res 37:101–116

    Google Scholar 

  • Huguen KA, Overpeck JT, Peterson LC, Trumbore S (1996) Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380:51–54

    Google Scholar 

  • Hulton NRJ, Purves RS, McCulloch RD et al (2002) The last Glacial Maximum and deglaciation in southern South America. Quat Sci Rev 21:233–241

    Google Scholar 

  • Ivanochko TS, Ganesshram RS, Brummer GJA et al (2005) Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planet Sci Lett 235:302–314

    Google Scholar 

  • Jaeschke A, Ruehlemann C, Arz H, Heil G, Lohmann G (2007) Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high latitude climate shifts during the last glacial period. Paleoceanography 22:PA4206. doi: 10.1029/2006PA001391

    Google Scholar 

  • Jennerjahn TC, Ittekkot V, Arz HW et al (2004) Asynchronous terrestrial and marine signals of climate change during Heinrich events. Science 306:2236–2239

    Google Scholar 

  • Klein AG, Seltzer GO, Isacks BL (1999) Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quat Sci Rev 18:63–84

    Google Scholar 

  • Kull C, Hänni F, Grosjean M, Veit H (2003) Evidence of an LGM cooling in NW-Argentina (22°S) derived from a glacier climate model. Quat Int 108 3–11

    Google Scholar 

  • Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443

    Google Scholar 

  • Labraga JC, Frumento O, López M (2000) The atmospheric water vapor cycle in South America and the tropospheric circulation. J Clim 13:1899–1915

    Google Scholar 

  • Lamy F, Hebbeln D, Wefer G (1998) Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5 degrees S) and palaeoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 141:233–251

    Google Scholar 

  • Lamy F, Hebbeln D, Wefer G (1999) High-resolution marine record of climatic change in mid- latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quat Res 51:83–93

    Google Scholar 

  • Lamy F, Klump J, Hebbeln D, Wefer G (2000) Late Quaternary rapid climate change in northern Chile. Terra Nova 12:8–13

    Google Scholar 

  • Lamy F, Kaiser J, Ninnemann U et al (2004) Antarctic timing of surface water changes off Chile and patagonian ice sheet response. Science 304:1959–1962

    Google Scholar 

  • Lamy F, Kaiser J. (2009) Glacial to Holocene paleoceanographic and continental paleoclimate reconstructions based on ODP Site 1233/GeoB 3313 off southern Chile. In: Vimeux F, Sylvestre F, Khodri M (eds) Developments in Paleoenvironmental Research. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Ledru MP, Bertaux J, Sifeddine A, Suguio K (1998) Absence of last glacial maximum records in tropical lowland forests. Quat Res 49:233–237

    Google Scholar 

  • Ledru MP, Rousseau DD, Cruz JFW et al (2005) Paleoclimate changes during the last 100 ka from a record in the Brazilian atlantic rainforest region and interhemispheric comparison. Quat Res 64:444–450

    Google Scholar 

  • Ledru MP, Mourguiart P, Riccomini C (2009) Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr Palaeoclimatol Palaeoecol 271:140–152

    Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–677

    Google Scholar 

  • Liu Z, Yang H (2003) Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys Res Lett 30:1230. doi: 10.1029/2002GL016492

    Google Scholar 

  • Liu Z (2006) Glacial Thermohaline circulation and climate: forcing from the North or South? Adv Atmos Sci 23:199–206

    Google Scholar 

  • Lowell TV, Heusser CJ, Andersen BG et al (1995) Interhemispheric correlation of Late Pleistocene glacial events. Science 269:1541–1549

    Google Scholar 

  • Markgraf V (1983) Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate, and arid environments in Argentina. Palynology 7:43–70

    Google Scholar 

  • Markgraf V (1984) Late Pleistocene and Holocene vegetation history of temperate Argentina: Lago Morenito, Bariloche. Diss Bot 72:235–254

    Google Scholar 

  • Markgraf V (1987) Paleoenvironmental changes at the northern limit of the subantarctic Nothofagus forest, Lat 37°, Argentina. Quat Res 28:119–129

    Google Scholar 

  • Markgraf V (1989) Reply to Heusser’s ‘Southern Westerlies during the Last Glacial Maximum’. Quat Res 31:426–432

    Google Scholar 

  • Marengo JA, Rogers JC (2001) Polar air outbreaks in the Americas assessments and impacts during modern and past climates. In: Markgraf V (ed) Interhemispheric Climate Linkages, Academic Press

    Google Scholar 

  • Martin L, Bertaux J, Corrège T et al (1997) Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8,800 cal. yr B.P. Quat Res 47:117–122

    Google Scholar 

  • Massaferro JI, Moreno PI, Denton GH et al (2009) Chironomid and pollen evidence for climate fluctuations during the Last Glacial Termination in NW Patagonia. Quat Sci Rev 28:517–525

    Google Scholar 

  • Mayle FE, Burn MJ, Power M, et al (2009) Vegetation and fire at the last Glacial Maximum in tropical South America. In: Vimeux F, Sylvestre F, Khodri M (eds) Developments in Paleoenvironmental Research. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Messerli B, Grosjean M, Bonani G et al (1993) Climate change and natural resource dynamics of the Atacama Altiplano during the last 18,000 years: a preliminary synthesis. Mou Res Dev 13:117–127

    Google Scholar 

  • Mix A, Bard E, Schneider R (2001) Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat Sci Rev 20:627–657

    Google Scholar 

  • Moreno PI (1997) Vegetation and climate near Lago Llanquihue in the Chilean Lake District between 20 200 and 9500 14C yr BP. J Quat Sci 12:485–500

    Google Scholar 

  • Moreno PI, Lowell TV, Jacobson GL, Denton GH (1999) Abrupt vegetation and climate changes during the last glacial maximum and last termination in the chilean Lake District: a case study from Canal de la Puntilla (41°S). Geogr Ann 81 A:285–311

    Google Scholar 

  • Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291

    Google Scholar 

  • Nogués-Paegle J, Mechoso CR, Fu R et al (2002) Progress in Pan American CLIVAR Research: understanding the South American Monsoon. Meteorologica 27:3–30

    Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science 290:1947–1951

    Google Scholar 

  • Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234:97–113

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Google Scholar 

  • Pierrehumbert RT (1999). Huascaran δ 18 O as an indicator of tropical climate during the Last Glacial Maximum. Geophys Res Lett 26:1345–1348

    Google Scholar 

  • Placzek C., Quade J., Patchett PJ (2006). Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geol Soc Am Bull 118:515–532

    Google Scholar 

  • Piovano E, Ariztegui D, Córdoba F et al (2008) Reconstrucciones paleohidrologicas en la región pampeana (Programa paleo-pampas). XII Argentine Meeting of Sedimentology, XIIRAS, Buenos Aires, Argentina

    Google Scholar 

  • Porter SC (2001) Snowline depression in the tropics during the last Glaciation. Quat Sci Rev 20:1067–1091

    Google Scholar 

  • Ramirez E, Hoffman G, Taupin JD et al (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet Sci Lett 212:337–350

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E et al (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1059

    Google Scholar 

  • Robertson AW, Mechoso CR (2000) Interrannual and interdecadal variability of the South Atlantic Convergence Zone. Mon Weather Rev 128:2947–2957

    Google Scholar 

  • Robertson AW, Mechoso CR, Young-Joon K (2000) The influence of Atlantic Sea surface temperature anomalies on the North Atlantic Oscillation. J Clim 13:122–138

    Google Scholar 

  • Robertson AW, Mechoso CR (2002) Links between the Atlantic Ocean and south American climate variability. Exchanges 25:1–4

    Google Scholar 

  • Rojas M, Moreno P, Kageyama M et al (2008) The southern westerlies during the last glacial maximum in PMIP2 simulations. Clim Dyn. doi10.1007:s00382-008-0421-7

    Google Scholar 

  • Saulo AC, Nicolini M, Chou SC (2000) Model characterization of the South American low-level flow during the 1997–1998 spring-summer season. Clim Dyn 16:867–881

    Google Scholar 

  • Seltzer GO, Rodbell DT, Baker PA et al. (2002). Early warming of tropical South America at the Last Glacial-Interglacial transition. Science 296:1685–1686

    Google Scholar 

  • Servant M, Fournier M, Argollo J et al (1995) La dernière transition glaciaire/interglaciaire des Andes tropicales sud (Bolivie) d’après l’étude des variations des niveaux lacustres et des fluctuations glaciaires. Comptes Rendus Académie des Sciences Paris 320:729–736

    Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ et al (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146

    Google Scholar 

  • Shin SI, Liu Z, Otto-Bliesner B et al (2003) A simulation of the Last Glacial Maximum using the NCAR-CCSM. Clim Dyn 20:127–151

    Google Scholar 

  • Sifeddine A, Fröhlich F, Fournier M et al (1994) La sédimentation lacustre indicateur de changements des paléoenvironnements au cours des 30 000 dernières années (Carajas, Amazonie, Brésil). Comptes Rendus Académie des Sciences Paris 318:1645–1652

    Google Scholar 

  • Sifeddine A, Albuquerque ALS, Ledru MP et al (2003) A 21 000 cal years paleoclimatic record from Caçó Lake, northern Brazil: evidence from sedimentary and pollen analyses. Palaeogeogr Palaeoclimatol Palaeoecol 189:25–34

    Google Scholar 

  • Smith JA, Seltzer GO, Farber DL et al (2005a) Early local Last Glacial Maximum in the Tropical Andes. Science 308:678–681

    Google Scholar 

  • Smith JA, Seltzer GO, Rodbell DT, Klein AG (2005b) Regional synthesis of last glacial maximum snowlines in the tropical Andes, South America. Quat Int 138–139:145–167

    Google Scholar 

  • Smith JA, Mark BG, Rodbell DT (2008) The timing and magnitude of mountain glaciations in the tropical Andes. J Quat Sci 23:609–634

    Google Scholar 

  • Stevaux JC (2000) Climatic events during the Late Pleistocene and Holocene in the Upper Parana River: correlation with the NE Argentina and South-Central Brazil. Quat Int 72:73–85

    Google Scholar 

  • Stine S, Stine M (1990) A record from Lake Cardiel of climate change in southern South America. Nature 345:705–707

    Google Scholar 

  • Stuut JBW, Crosta X, Van der Borg K, Schneider R (2004) Relationship between Antarctic sea ice and southwest African climate during the late Quaternary. Geology 32:09–912

    Google Scholar 

  • Stuut JBW, Lamy F (2004) Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quat Res 62:301–309

    Google Scholar 

  • Sylvestre F, Servant-Vildary S, Servant M (1998) Le Dernier Maximum glaciaire (21 000–17 000 14C ans B.P.) dans les Andes tropicales de Bolivie d’après l’étude des diatomées. Comptes Rendus Académie des Sciences Paris 327:611–618

    Google Scholar 

  • Sylvestre F, Servant M, Servant-Vildary S et al (1999) Chronology of lake-level changes in the South Bolivian Altiplano (18–23°S) during Late-Glacial and early Holocene times. Quat Res 51:54–66

    Google Scholar 

  • Sylvestre F (2002) A high resolution diatom-reconstruction between 21 and 17 kyr B.P. from the southern Bolivian Altiplano. J Paleolimnol 27:45–57

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME et al (1995) Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:46–50

    Google Scholar 

  • Thompson LG, Davis ME, Mosley-Thompson E et al (1998) A 25,000-year tropical climate history from Bolivian ice cores. Science 282:1858–1864

    Google Scholar 

  • Thompson LG (2000) Ice core evidence for climate change in the tropics: implications for our future. Quat Sci Rev 19:19–35

    Google Scholar 

  • Trauth MH, Strecker MR (1999). Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 yr B.P. in northwestern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 153:277–287

    Google Scholar 

  • Trauth MH, Ricardo AA, Haselton KR et al (2000). Climate change and mass movements in the NW Argentine Andes. Earth Planet Sci Lett 179:243–256

    Google Scholar 

  • Van der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742

    Google Scholar 

  • Van Geel B, Van der Hammen T (1973) Upper Quaternary vegetational and climatic sequence of the Fuquene area (Eastern Cordillera Colombia). Palaeogeogr Palaeoclimatol Palaeoecol 14:9–92

    Google Scholar 

  • Vera C, Higgins W, Amador J et al (2006) Towards a Unified View of the American Monsoon Systems. J Clim 19:4977–5000

    Google Scholar 

  • Vimeux F, Gallaire R, Bony S et al (2005) What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia): implications for the Illimani ice core interpretation. Earth Planet Sci Lett 240:205–220

    Google Scholar 

  • Visser K, Thunnel R, Stott L (2003) Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421:152–155

    Google Scholar 

  • Vizy EK, Cook KH (2007) Relationship between Amazon and high Andes precipitation. J Geophys Res – Atmos 112 (D7):Art. No. D07107

    Google Scholar 

  • Vuille M, Ammann C (1997) Regional snowfall patterns in the high, arid Andes. Clim Change 36:413–423

    Google Scholar 

  • Wainer I, Clauzet G, Ledru MP et al (2005) Last Glacial Maximum in South America: paleoclimate proxies and model results. Geophys Res Lett 32. doi:10.1029/2004GL021244.

    Google Scholar 

  • Wang X, Auler AS, Edwards RL et al (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743

    Google Scholar 

  • Wang X, Auler AS, Edwards R et al (2006) Interhemispheric anti-phasing of rainfall during the last glacial period. Quat Sci Rev 25:3391–3403

    Google Scholar 

  • Wirrmann D, Ybert JP, Mourguiart P (1992) A 20,000 years palaeohydrological record from Lake Titicaca. In: Dejoux C, Iltis A (eds) Lake titicaca, a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ybert JP (1992) Ancient lake environments as deduced from pollen analysis. In: Dejoux C, Iltis A (eds) Lake Titicaca, a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Google Scholar 

  • Zech R, May JH, Kull C et al (2008) Timing of the late Quaternary glaciations in the Andes from ∼15 to 40°S. J Quat Sci 23:635–647

    Google Scholar 

Download references

Acknowledgments

Paleoclimate works at the CEREGE is supported by the French Research National Agencies (IRD, CNRS). I acknowledge M. Williams, F. Vimeux, M. Khodri and two anonymous reviewers for the improvements of the manuscript, comments and discussions. I thank J.-J. Motte for his advices on the figure drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Sylvestre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sylvestre, F. (2009). Moisture Pattern During the Last Glacial Maximum in South America. In: Vimeux, F., Sylvestre, F., Khodri, M. (eds) Past Climate Variability in South America and Surrounding Regions. Developments in Paleoenvironmental Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2672-9_1

Download citation

Publish with us

Policies and ethics