Skip to main content

Sclerochronology

  • Reference work entry
Encyclopedia of Modern Coral Reefs

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Coral chronometersRelated to Dendrochronology

Definition

Sclerochronology: The term sclerochronology is derived from the Greek words sklero, meaning “hard,” and chronos, meaning “time.” The field of sclerochronology is the study of periodicities stored in accreted hard parts and skeletons of various extant and extinct organisms. The periodicity can range from daily to annual scales and compose chronologies that span years to centuries, thus providing potentially long records of historical variations. Annual periodicity provides a chronology for determining age, growth rates, and reconstructions of environmental influences. Along with the recorded growth chronologies, the chemical composition of the skeleton also contains temporal records based on isotopic ratios and trace elemental concentrations, which can be used to reconstruct proxy paleoenvironmental and paleoclimatic records. Studies of skeletal growth and geochemical records have been used within the broader fields of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adams, L. A., 1940. Some characteristic of otoliths of American Ostariophysi. Journal of Morphology, 66(3), 497–527.

    Article  Google Scholar 

  • Barnes, D. J., 1970. Coral skeletons: an explanation of their growth and structure. Science, 170(3964), 1305–1308.

    Article  Google Scholar 

  • Barnes, D. J., 1972. The structure and formation of growth-ridges in scleractinian coral skeletons. Proceedings of the Royal Society of London. Series B, Biological Sciences, 182(1068), 331–350.

    Article  Google Scholar 

  • Barnes, D. J., and Devereux, M. J., 1988. Variations in skeletal architecture associated with density banding in the hard coral Porites. Journal of Experimental Marine Biology and Ecology, 121(1), 37–54.

    Article  Google Scholar 

  • Barnes, D. J., and Lough, J. M., 1990. Computer simulations showing the likely effects of calix architecture and other factors on retrieval of density information from coral skeletons. Journal of Experimental Marine Biology and Ecology, 137(2), 141–164.

    Article  Google Scholar 

  • Barnes, D. J. and Lough, J. M., 1999. Porites growth characteristics in a changed environment: Misima Island, Papua New Guinea. Coral Reefs, 18(3), 213–218.

    Article  Google Scholar 

  • Barnes, D. J., Lough, J. M., and Tobin, B. J., 1989. Density measurements and the interpretation of X-radiographic images of slices of skeleton from the colonial hard coral Porites. Journal of Experimental Marine Biology and Ecology, 131(1): 45–60.

    Article  Google Scholar 

  • Barnes, D. J., and Taylor, R. B., 1993. On corallites apparent in X-radiographs of skeletal slices of Porites. Journal of Experimental Marine Biology and Ecology, 173(1), 123–131.

    Article  Google Scholar 

  • Barnes, D. J., and Taylor, R. B., 2005. On the nature and causes of luminescent lines and bands in coral skeletons. II. Contribution of skeletal crystals. Journal of Experimental Marine Biology and Ecology, 322(2), 135–142.

    Article  Google Scholar 

  • Barnes, D. J., Taylor, R. B., and Lough, J. M., 2003. Measurement of luminescence in coral skeletons. Journal of Experimental Marine Biology and Ecology, 295(1), 91–106.

    Article  Google Scholar 

  • Bessat, F., and Buigues, D., 2001. Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 175(1–4), 381.

    Article  Google Scholar 

  • Bonham, K., 1965. Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by autoradiography. Science, 149, 300–302.

    Article  Google Scholar 

  • Bosscher, H., 1993. Computerized-tomography and skeletal density of coral skeletons. Coral Reefs, 12(2), 97–103.

    Article  Google Scholar 

  • Bosscher, H., and Meesters, E. H., 1993. Depth related changes in the growth rate of Montastrea annularis. In Proceedings of the Seventh International Coral Reef Symposium, Guam, pp. 507–512.

    Google Scholar 

  • Boto, K., and Isdale, P., 1985. Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone. Nature, 315(6018), 396–397.

    Article  Google Scholar 

  • Bowen, H. J. M., 1956. Strontium and barium in sea water and marine organisms. Journal of Marine Biology Association of the United Kingdom, 35, 451–460.

    Article  Google Scholar 

  • Buddemeier, R. W., 1974. Environmental controls over annual and lunar monthly cycles in hermatypic coral calcification. In Proceedings of Second International Coral Reef Symposium, pp. 259–267.

    Google Scholar 

  • Buddemeier, R. W., and Kinzie, R. A., 1975. The chronometric reliability of constemporary corals. In Rosenberg, G. D., and Runcorn, S. K. (eds.), Growth Rhythms and the History of the Earth’s Rotation. London: Wiley, pp. 135–147.

    Google Scholar 

  • Buddemeier, R. W., and Kinzie, R. A., 1976. Coral growth. Oceanography Marine Biology Annual Review, 14, 183–225.

    Google Scholar 

  • Buddemeier, R. W., Maragos, J. E., and Knutson, D., 1974. Radiographic studies of reef coral exoskeleton: rates and patterns of coral growth. Journal of Experimental Marine Biology and Ecology, 14, 179–225.

    Article  Google Scholar 

  • Carlton, R. R., and Adler, A. M., 1996. Principles of radiographic imaging: an art and a science. Albany, New York: Delmar.

    Google Scholar 

  • Carricart-Ganivet, J. P., 2004. Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. Journal of Experimental Marine Biology and Ecology, 302(2), 249–260.

    Article  Google Scholar 

  • Carricart-Ganivet, J. P., Beltran-Torres, A. U., Merino, M., and Ruiz-Zarate, M. A., 2000. Skeletal extension, density and calcification rate of the reef building coral Montastraea annularis (Ellis and Solander) in the Mexican Caribbean. Bulletin of Marine Science, 66, 215–224.

    Google Scholar 

  • Carricart-Ganivet, J. P., and Merino, M., 2001. Growth responses of the reef-building coral Montastraea annularis along a gradient of continental influence in the southern Gulf of Mexico. Bulletin of Marine Science, 68, 133–146.

    Google Scholar 

  • Chalker, B., Barnes, D., and Isdale, P., 1985. Calibration of x-ray densitometry for the measurement of coral skeletal density. Coral Reefs, 4(2), 95–100.

    Article  Google Scholar 

  • Chalker, B. E., and Barnes, D. J., 1990. Gamma densitometry for the measurement of skeletal density. Coral Reefs, 9(1), 11–23.

    Article  Google Scholar 

  • Cooper, T. F., De’ath, G., Fabricius, K. E., and Lough, J. M., 2008. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Global Change Biology, 14(3), 529–538.

    Article  Google Scholar 

  • Davenport, C. B., 1938. Growth lines in fossil pectens as indicators of past climates. Journal of Paleontology, 12(5), 514–515.

    Google Scholar 

  • De’ath, G., Lough, J. M., and Fabricius, K. E., 2009. Declining coral calcification on the Great Barrier Reef. Science, 323(5910), 116–119.

    Article  Google Scholar 

  • Dodge, R. E., 1981. Growth characteristics of reef-building corals within and external to a naval ordinance range: Vieques, Puerto Rico. In Proceedings of Fourth International Coral Reef Symposium, Manila, Philippines, pp. 214–248.

    Google Scholar 

  • Dodge, R. E., Aller, R. C., and Thomson, J., 1974. Coral growth related toresuspension of bottom sediments. Nature, 247(5442), 574–577.

    Article  Google Scholar 

  • Dodge, R. E., and Brass, G. W., 1984. Skeletal extension, density and calcification of the reef coral, Montastrea annularis: St. Croix, U.S. Virgin Islands. Bulletin of Marine Science, 34, 288–307.

    Google Scholar 

  • Dodge, R. E., and Kohler, K. E., 1985. Image analysis of coral skeletons for extension rate, calcification rate, and density: advances in reef science, Joint Meeting of Atlantic Reef Committee and the International Society of Reef Studies, Miami, FL: pp. 31–32.

    Google Scholar 

  • Dodge, R. E., and Lang, J. C., 1983. Environmental correlates of hermatypic coral (Montastrea annularis) growth on the East Flower Gardens Bank, northwest Gulf of Mexico. Limnology Oceanography, 28, 228–240.

    Article  Google Scholar 

  • Dodge, R. E., Szmant, A. M., Garcia, R., Swart, P. K., Forrester, A., and Leder, J. J., 1992. Skeletal structural basis of density banding in the reef coral Montastraea annularis. In Proceedings of Seventh International Coral Reef Symposium, Guam, pp. 186–195.

    Google Scholar 

  • Dodge, R. E., and Thomson, J., 1974. The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean. Earth and Planetary Science Letters, 23(3), 313–322.

    Article  Google Scholar 

  • Dodge, R. E., and Vaisnys, J. R., 1977. Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. Journal of Marine Research, 35, 715–730.

    Google Scholar 

  • Dodge, R. E., Wyers, S. C., Frith, H. R., Knap, A. H., Smith, S. R., Cook, C. B., and Sleeter, T. D., 1984. Coral calcification rates by the buoyant weight technique: Effects of alizarin staining. Journal of Experimental Marine Biology and Ecology, 75(3), 217.

    Article  Google Scholar 

  • Druffel, E. R. M., 1997. Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8354–8361.

    Article  Google Scholar 

  • Dustan, P., 1975. Growth and form in the reef-building coral Montastrea annularis. Marine Biology, 33(2), 101–107.

    Article  Google Scholar 

  • Edmondson, C. H., 1929. Growth of Hawaiian corals. Honolulu: Bernice P. Bishop Museum.

    Google Scholar 

  • Emiliani, C., Hudson, J. H., Shinn, E. A., and George, R. Y., 1978. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science, 202(4368), 627–629.

    Article  Google Scholar 

  • Fairbanks, R. G., and Dodge, R. E., 1979. Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis. Geochimica et Cosmochimica Acta, 43(7), 1009–1020.

    Article  Google Scholar 

  • Fang, L. -S., and Chou, Y. -C., 1992. Concentration of fulvic acid in the growth bands of hermatypic corals in relation to local precipitation. Coral Reefs, 11(4), 187–191.

    Article  Google Scholar 

  • Finckh, A. E., 1904. The Atoll of Funafuti: biology of the reef-forming organisms at Funafuti Atoll. Report of Coral Reef Comittee, Royal Society, London, 5, pp. 125–150.

    Google Scholar 

  • Fritts, H. C., Blasing, T. J., Hayden, B. P., and Kutzbach, J. E., 1971. Multivariate techniques for specifying tree-growth and climate relationships and for reconstructing anomalies in paleoclimate. Journal of Applied Meteorology, 10(5), 845–864.

    Article  Google Scholar 

  • Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B., and Schrag, D. P., 2000. New views of tropical paleoclimates from corals. Quaternary Science Reviews, 19(1–5), 45–64.

    Article  Google Scholar 

  • Gladfelter, E., 1983. Skeletal development in Acropora cervicornis. II. Diel pattern of calcium carbonate accretion. Coral Reefs, 2(2), 91–100.

    Article  Google Scholar 

  • Gledhill, D. K., Wanninkhof, R., Millero, F. J., and Eakin, M., 2008. Ocean acidification of the Greater Caribbean Region 1996–2006. Journal of Geophysics Research, 113, C10031.

    Article  Google Scholar 

  • Goreau, T. J., 1977. Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proceedings of the Royal Society of London. Series B, Biological Sciences, 196(1124), 291–315.

    Article  Google Scholar 

  • Goreau, T. J., and Macfarlane, A. H., 1990. Reduced growth rate of Montastrea annularis following the 1987–1988 coral-bleaching event. Coral Reefs, 8(4), 211–215.

    Article  Google Scholar 

  • Grottoli, A. G., and Eakin, C. M., 2007. A review of modern coral δ18O and Δ14C proxy records. Earth Science Reviews, 81, 67–91.

    Article  Google Scholar 

  • Guzman, H. M., and Tudhope, A. W., 1998. Seasonal variation in skeletal extension rate and stable isotopic (13C/12C and 18O/16O) composition in response to several environmental variables in the Caribbean reef coral Siderastrea siderea. Marine Ecology Progress Series, 166, 109–118.

    Article  Google Scholar 

  • Helmle, K. P., Dodge, R. E., and Ketcham, R. A., 2002. Skeletal architecture and density banding in Diploria strigosa by x-ray computed tomography. In Proceedings of Ninth International Coral Reef Symposium, Bali, Indonesia, pp. 365–371.

    Google Scholar 

  • Hendy, E. J., Gagan, M. K., and Lough, J. M., 2003. Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia. The Holocene, 13(2), 187–199.

    Article  Google Scholar 

  • Highsmith, R. C., 1979. Coral growth rates and environmental control of density banding. Journal of Experimental Marine Biology and Ecology, 37(2), 105–125.

    Article  Google Scholar 

  • Hubbard, D., and Scaturo, D., 1985. Growth rates of seven species of scleractinean corals from Cane Bay and Salt River, St. Croix, USVI. Bulletin of Marine Science, 36(2), 325–338.

    Google Scholar 

  • Hudson, H., 1981. Growth rates in Montastrea faveolata: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bulletin of Marine Science, 31, 444–459.

    Google Scholar 

  • Hudson, H., Shinn, E. A., Halley, R. B., and Lidz, B., 1976. Sclerochronology: a tool for interpreting past environments. Geology, 4, 361–364.

    Article  Google Scholar 

  • Hudson, J. H., Hanson, K. J., Halley, R. B., and Kindinger, J. K., 1994. Environmental implications of growth rate changes in Montastrea faveolata: Biscayne National Park, Florida. Bulletin of Marine Science, 54(3), 647–669.

    Google Scholar 

  • Huston, M., 1985. Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs, 4(1), 19–25.

    Article  Google Scholar 

  • Isdale, P., 1984. Fluorescent bands in massive corals record centuries of coastal rainfall. Nature, 310(5978), 578–579.

    Article  Google Scholar 

  • Isdale, P. J., Stewart, B. J., Tickle, K. S., and Lough, J. M., 1998. Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. The Holocene, 8(1), 1–8.

    Article  Google Scholar 

  • Isely, F. B., 1913. Experimental study of the growth and migration of fresh water mussels. Report of U.S. Commission on Fish, Appendix 3, 24 pp.

    Google Scholar 

  • Isely, F. B., 1931. A fifteen year growth record in fresh-water mussels. Ecology, 12(3), 616–619.

    Article  Google Scholar 

  • Jackson, J. R., 2007. Earliest references to age determination of fishes and their early application to the study of fisheries. Fisheries, 32(7), 321–328.

    Article  Google Scholar 

  • Jokiel, P. L., and Coles, S. L., 1977. Effects of temperature on the mortality and growth of Hawaiian reef corals. Marine Biology, 43(3), 201–208.

    Article  Google Scholar 

  • Keith, M. L., and Weber, J. N., 1965. Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae. Science, 150(3695), 498–501.

    Article  Google Scholar 

  • Klein, R., and Loya, Y., 1991. Skeletal growth and density patterns of two Porites corals from the Gulf of Eilat, Red Sea. Marine Ecology Progress Series, 77(2–3): 253–259.

    Article  Google Scholar 

  • Klein, R., Patzold, J., Wefer, G., and Loya, Y., 1993. Depth-related timing of density band formation in Porites Spp corals from the Red-Sea Inferred from x-ray chronology and stable-isotope composition. Marine Ecology Progress Series, 97(1), 99–104.

    Article  Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C., and Opdyke, B. N., 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411), 118–120.

    Article  Google Scholar 

  • Knap, A. H., Sleeter, T. D., Dodge, R. E., Wyers, S. C., Frith, H. R., and Smith, S. R., 1983. The effects of oil spills and dispersant use on corals: a review and multidisciplinary experimental approach. Oil and Petrochemical Pollution, 1(3), 157–169.

    Article  Google Scholar 

  • Knutson, D. W., Buddemeier, R. W., and Smith, S. V., 1972. Coral chronometers: seasonal growth bands in reef corals. Science, 177(4045), 270–272.

    Article  Google Scholar 

  • Le Tissier, M. D. A., Clayton, B., Brown, B. E., and Davis, P. S., 1994. Skeletal correlates of coral density banding and an evaluation of radiography as used in sclerochronology. Marine Ecology Progress Series, 110(1), 29–44.

    Article  Google Scholar 

  • Leeuwenhoek, A., 1685. Abstract of letter of Mr Anthony Leewenhoek [sic] Fellow of the R. Society; concerning the parts of brains of several animals; chalk stones of the gout; the leprosy and the scales of eels. Philosophical Transactions of the Royal Society of London, 15, 883–895.

    Article  Google Scholar 

  • Lewis, J. B., 1971. Effect of crude oil and an oil-spill dispersant on reef corals. Marine Pollution Bulletin, 2(4), 59–62.

    Article  Google Scholar 

  • Livingston, H. D., and Thompson, G., 1971. Trace element concentrations in some modern corals. Limnology and Oceanography, 16(5), 786–796.

    Article  Google Scholar 

  • Logan, A., and Tomascik, T., 1991. Extension growth rates in two coral species from high-latitude reefs of Bermuda. Coral Reefs, 10(3), 155–160.

    Article  Google Scholar 

  • Logan, A., Yang, L., and Tomascik, T., 1994. Linear skeletal extension rates in two species of Diploria from high-latitude reefs in Bermuda. Coral Reefs, 13(4), 225–230.

    Article  Google Scholar 

  • Lough, J., Barnes, D., and McAllister, F., 2002. Luminescent lines in corals from the Great Barrier Reef provide spatial and temporal records of reefs affected by land runoff. Coral Reefs, 21(4), 333–343.

    Google Scholar 

  • Lough, J. M., 2007. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography, 22, 2218.

    Article  Google Scholar 

  • Lough, J. M., 2008. Coral calcification from skeletal records revisited. Marine Ecology Progress Series, 373, 257–264.

    Article  Google Scholar 

  • Lough, J. M., and Barnes, D. J., 1992. Comparisons of skeletal density variations in Porites from the central Great Barrier Reef. Journal of Experimental Marine Biology and Ecology, 155(1), 1.

    Article  Google Scholar 

  • Lough, J. M., and Barnes, D. J., 1997. Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. Journal of Experimental Marine Biology and Ecology, 211(1), 29.

    Article  Google Scholar 

  • Lough, J. M., and Barnes, D. J., 2000. Environmental controls on growth of the massive coral Porites. Journal of Experimental Marine Biology and Ecology, 245(2), 225–243.

    Article  Google Scholar 

  • Loya, Y., 1976. Effects of water turbidity and sedimentation on the community structure of Puerto Rican corals. Bulletin of Marine Science, 26(4), 450–466.

    Google Scholar 

  • Ma, T. Y. H., 1933. On the seasonal change of growth in some Paleozoic corals. Proceedings of Imperial Academy, Tokyo, Vol. 9, pp. 407–409.

    Google Scholar 

  • Ma, T. Y. H., 1934a. On the growth rate of reef corals and the sea water temperature in the Japanese islands during the latest geological times. Tohoku Imperial University, Sendai, Japan, Science Reports, 16(Second Series), 166–189.

    Google Scholar 

  • Ma, T. Y. H., 1934b. On the seasonal change of growth in the reef coral Favia speciosa (Dana). In Proceedings of the Imperial Academy, Tokyo, Vol. 10, 353–356.

    Google Scholar 

  • Ma, T. Y. H., 1937. On the growth of reef corals and its relation to sea water temperatures. Palaeontologia Sinica, 16(Series B), 426 pp.

    Google Scholar 

  • Macintyre, I. G., and Smith, S. V., 1974. X-radiographic studies of skeletal development in coral colonies. In Proceedings of Second International Coral Reef Symposium, Brisbane, Australia, pp. 277–287.

    Google Scholar 

  • Mayor, A. G., 1918. The growth-rate of Samoan coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 4(12), 390–393.

    Article  Google Scholar 

  • Mendes, J. M., 2004. Timing of skeletal band formation in Montastraea annularis: relationship to environmental and endogenous factors. Bulletin of Marine Science, 75, 423–437.

    Google Scholar 

  • Mendes, J. M., and Woodley, J. D., 2002. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Marine Ecology Progress Series, 235, 93–102.

    Article  Google Scholar 

  • Moore, W. S., and Krishnaswami, S., 1974. Correlation of x-radiography revealed banding in corals with radiometric growth rates. In Proceedings of Second International Coral Reef Symposium, Brisbane, Australia, pp. 269–276.

    Google Scholar 

  • Nyberg, J., 2002. Luminescence intensity in coral skeletons from Mona Island in the Caribbean Sea and its link to precipitation and wind speed. Philosophical Transactions of Royal Society of London A, 360, 749–766.

    Article  Google Scholar 

  • Nyberg, J., Malmgren, B. A., Winter, A., Jury, M. R., Kilbourne, K. H., and Quinn, T. M., 2007. Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature, 447(7145), 698–701.

    Article  Google Scholar 

  • Orton, J. H., 1923. On the significance of “rings” on the shells of Cardium and other mollusks. Nature, 112(2801), 10.

    Article  Google Scholar 

  • Pell, R. L., 1859. Edible fishes of New York: their habitats and manner of rearing, and artificial production. Transactions of the New York State Agricultural Society, Proceedings of the County Agricultural Society, 13, 334–397.

    Google Scholar 

  • Runcorn, S. K., 1966. Corals as paleontological clocks. Scientific America, 215, 26–33.

    Article  Google Scholar 

  • Scoffin, T. P., Tudhope, A. W., Brown, B. E., Chansang, H., and Cheeney, R. F., 1992. Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs, 11(1), 1–11.

    Article  Google Scholar 

  • Shinn, E. A., 1966. Coral growth-rate, an environmental indicator. Journal of Paleontology, 40, 233–241.

    Google Scholar 

  • Smith, S. V., and Buddemeier, R. W., 1992. Global change and coral reef ecosystems. Annual Review of Ecology and Systematics, 23(1), 89–118.

    Article  Google Scholar 

  • Stephenson, T. A., and Stephenson, A., 1933. Growth and asexual reproduction in corals. Great Barrier Reef Expedition, 1928–1929: Scientific Reports, 3, 167–217.

    Google Scholar 

  • Swart, P. K., 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Science Reviews, 19(1), 51–80.

    Article  Google Scholar 

  • Swart, P. K., and Grottoli, A., 2003. Proxy indicators of climate in coral skeletons: a perspective. Coral Reefs, 22(4), 313–315.

    Article  Google Scholar 

  • Tamura, T., and Hada, Y., 1934. Growth rate of reef building corals, inhabiting in the South Sea Island. Science Reports, Tohoku Imperial University, 7, 433–455.

    Google Scholar 

  • Tanzil, J., Brown, B., Tudhope, A., and Dunne, R., 2009. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs, 28, 519–528.

    Article  Google Scholar 

  • Taylor, R. B., Barnes, D. J., and Lough, J. M., 1993. Simple models of density band formation in massive corals. Journal of Experimental Marine Biology and Ecology, 167(1), 109–125.

    Article  Google Scholar 

  • Thompson, T. G., and Chow, T. J., 1955. The strontium-calcium atom ratio in carbonate secreting marine organisms. Papers on Marine Biology Oceanography – Deep Sea Research, 3(Suppl.), 20–39.

    Google Scholar 

  • Tomascik, T., and Sander, F., 1985. Effects of eutrophication on reef-building corals. I. Growth rate of the reef-building coral Montastrea Annularis. Marine Biology, 87(2), 143–155.

    Article  Google Scholar 

  • Torres, J. L., 2001. Impacts of sedimentation on the growth rates of Montastraea annularis in southwest Puerto Rico. Bulletin of Marine Science, 69, 631–637.

    Google Scholar 

  • Tudhope, A. W., Lea, D. W., Shimmield, G. B., Chilcott, C. P., and Head, S., 1996. Monsoon climate and Arabian Sea coastal upwelling recorded in massive corals from southern Oman. Palaios, 11(4), 347–361.

    Article  Google Scholar 

  • van Woesik, R., Lacharmoise, F., and Koksal, S., 2006. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecology Letters, 9(4), 390–398.

    Article  Google Scholar 

  • Vaughan, T. W., 1915. The Geological significance of the growth-rate of the Floridian and Bahaman shoal-water corals. Journal of Washington Academy of Science, 5(17), 591–600.

    Google Scholar 

  • Veeh, H. H., and Turekian, K. K., 1968. Cobalt, silver, and uranium concentrations of reef-building corals in the Pacific Ocean. Limnology and Oceanography, 13(2), 304–308.

    Article  Google Scholar 

  • Weber, J. N., White, E. W., and Weber, P. H., 1975. Correlation of density banding in reef coral skeletons with environmental parameters; the basis for interpretation of chronological records preserved in the coralla of corals. Paleobiology, 1(2), 137–149.

    Google Scholar 

  • Weber, J. N., and Woodhead, P. M. J., 1970. Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals. Chemical Geology, 6, 93–117.

    Article  Google Scholar 

  • Wellington, G. M., and Glynn, P. W., 1983. Environmental influences on skeletal banding in eastern Pacific (Panama) corals. Coral Reefs, 1(4), 215–222.

    Article  Google Scholar 

  • Wells, J. W., 1956. Treatise on invertebrate paleontology. Part F: Coelenterata. R. C. Moore. Lawrence, KA, GSA and University of Kansas Press. F, 328–403.

    Google Scholar 

  • Wells, J. W., 1963. Coral growth and geochronometry. Nature, 197(4871), 948–950.

    Article  Google Scholar 

  • Whitfield, R. P., 1898. Notice of a remarkable specimen of the West India coral Madrepora palmata. New York: Published by order of the Trustees, American Museum of Natural History.

    Google Scholar 

  • Wood Jones, F., 1908. The rate of growth of reef building corals. London: J. Bale, Sons & Danielsson.

    Google Scholar 

  • Worum, F. P., Carricart-Ganivet, J. P., Benson, L., and Golicher, D., 2007. Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming. Limnology and Oceanography, 52(5), 2317–2323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Helmle, K.P., Dodge, R.E. (2011). Sclerochronology. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_22

Download citation

Publish with us

Policies and ethics