Skip to main content

A Landscape Ecology Approach for the Study of Ecological Connectivity Across Tropical Marine Seascapes

  • Chapter
  • First Online:
Ecological Connectivity among Tropical Coastal Ecosystems

Abstract

Connectivity across the seascape is expected to have profound consequences for the behavior, growth, survival, and spatial distribution of marine species. A landscape ecology approach offers great utility for studying ecological connectivity in tropical marine seascapes. Landscape ecology provides a well developed conceptual and operational framework for addressing complex multi-scale questions regarding the influence of spatial patterning on ecological processes. Landscape ecology can provide quantitative and spatially explicit information at scales relevant to resource management decision making. It will allow us to begin asking key questions such as ‘how much habitat to protect?’, ‘What type of habitat to protect?’, and ‘Which seascape patterns provide optimal, suboptimal, or dysfunctional connectivity for mobile marine organisms?’. While landscape ecology is increasingly being applied to tropical marine seascapes, few studies have dealt explicitly with the issue of connectivity. Herein, we examine the application of landscape ecology to better understand ecological connectivity in tropical marine ecosystems by: (1) reviewing landscape ecology concepts, (2) discussing the landscape ecology methods and tools available for evaluating connectivity, (3) examining data needs and obstacles, (4) reviewing lessons learned from terrestrial landscape ecology and from coral reef ecology studies, and (5) discussing the implications of ecological connectivity for resource management. Several recent studies conducted in coral reef ecosystems demonstrate the powerful utility of landscape ecology approaches for improving our understanding of ecological connectivity and applying results to make more informed decisions for conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreassen HP, Ims RA (2001) Dispersal in patchy vole populations: role of patch configuration, density dependence, and demography. Ecology 82:2911–2926

    Article  Google Scholar 

  • Andrefouet S, Kramer P, Torres-Pulliza D et al (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143

    Article  Google Scholar 

  • Andrén H (1994) Effect of habitat fragmentation on birds and mammals in landscapes with dif-ferent proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Appeldoorn RS, Friedlander A, Sladek Nowlis J et al (2003) Habitat connectivity in reef fish communities and marine reserve design in Old Providence-Santa Catalina, Colombia. Gulf Caribb Res 14:61–77

    Google Scholar 

  • Ault TR, Johnson CR (1998) Spatially and temporally predictable fish communities on coral reefs. Ecol Monogr 68:25–50

    Google Scholar 

  • Beets J, Muehlstein L, Haught K et al (2003) Habitat connectivity in coastal environments: patterns and movements of Caribbean coral reef fishes with emphasis on bluestriped grunt, Haemulon sciurus. Gulf Caribb Res 14:29–42

    Google Scholar 

  • Birkeland C (1985) Ecological interactions between mangroves, seagrass beds and coral reefs. In: Birke-land C (ed) Ecological interactions between tropical coastal ecosystems. UNEP Regional Seas Reports 73. Earth-print, Stevenage, UK

    Google Scholar 

  • Bohnsack JA, Bannerot SP (1986) A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41

    Google Scholar 

  • Bohnsack JA, Harper DE, McClellan DB et al (1994) Effects of reef size on colonization and assemblage structure of fishes at artificial reefs off southeastern Florida, USA. Bull Mar Sci 55:796–823

    Google Scholar 

  • Brock VE (1954) A method of estimating reef fish populations. J Wildl Manage 18:297–308

    Article  Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manage 59(SI 4):265–278

    Article  Google Scholar 

  • Burke N (1995) Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatum and H. sciurus at Tobacco Caye, Belize. Environ Biol Fish 42:365–374

    Article  Google Scholar 

  • Burrough PA (1986) Principles of Geographic Information Systems for land resources assessment. Oxford University Press, Oxford, UK

    Google Scholar 

  • Butler MJ, Dolan TW, Hunt JH et al (2005) Recruitment in degraded marine habitats: a spatially explicit, individual-based model for spiny lobster. Ecol Appl 15:902–918

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  • Carleton Ray G (1991) Coastal-zone biodiversity patterns. BioScience 41:490–498

    Article  Google Scholar 

  • Chapman MR, Kramer DL (2000) Movements of fishes within and among fringing coral reefs in Barbados. Environ Biol Fish 57:11–24

    Article  Google Scholar 

  • Chateau O, Wantiez L (2007) Site fidelity and activity patterns of a humphead wrasse, Cheilinus undulates (Labridae), as determined by acoustic telemetry. Environ Biol Fish 80:503–508

    Article  Google Scholar 

  • Chittaro PM, Fryer BJ, Sale R (2004) Discrimination of French grunts (Haemulon flavolineatum Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. J Exp Mar Biol Ecol 308:169–183

    Article  Google Scholar 

  • Christensen JD, Jeffrey CFG, Caldow C et al (2003) Cross-shelf habitat utilization patterns of reef fishes in southwestern Puerto Rico. Gulf Caribb Res 14:9–27

    Google Scholar 

  • Clark R, Monaco ME, Appeldoorn RS, Roque B (2005) Fish habitat utilization in a Puerto Rico coral reef ecosystem. Proc Gulf Caribb Fish Inst 56:467–485

    Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  CAS  Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Christianen MJA et al (2005) Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Mar Ecol Prog Ser 302:63–76

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Nagelkerken I et al (2006a) Different surrounding landscapes may result in different fish assemblages in East African seagrass beds. Hydrobiologia 563:45–60

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Nagelkerken I et al (2006b) Seagrass beds and mangroves as potential nurseries for the threatened Indo-Pacific humphead wrasse, Cheilinus undulatus and Caribbean rainbow parrotfish, Scarus guacamaia. Biol Conserv 129:277–282

    Article  Google Scholar 

  • Dorenbosch M, van riel MC, Nagelkerken I et al (2004a) The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuar Coast Shelf Sci 60:37–48

    Article  Google Scholar 

  • Dorenbosch M, Verberk WCEP, Nagelkerken I et al (2007) Influence of habitat configuration on connectivity between fish assemblages of Caribbean seagrass beds, mangroves and coral reefs. Mar Ecol Prog Ser 334:103–116

    Article  Google Scholar 

  • Dorenbosch M, Verweij MC, Nagelkerken I et al (2004b) Homing and daytime tidal movements of juvenile snappers (Lutjanidae) between shallow-water nursery habitats in Zanzibar, western Indian Ocean. Environ Biol Fish 70:203–209

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Fagan WF, Calabreses JM (2006) Quantifying connectivity: balancing metric performance with data requirements. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Conservation biology 14, Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. John Wiley and Sons, New York

    Google Scholar 

  • Gardner RH, O’Neill RV (1991) Pattern, process and predictability: the use of neutral models for landscape analysis. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology: the analysis and interpretation of landscape heterogeneity. Springer-Verlag, New York

    Google Scholar 

  • Garrabou J, Riera J, Zabala M (1998) Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landsc Ecol 13:225–247

    Article  Google Scholar 

  • Gaucherel C, Fleury D, Auclair D (2006) Neutral models for patchy landscapes. Ecol Modell 197:159–170

    Article  Google Scholar 

  • Gillanders BM, Able KW, Brown JA et al (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247:281–295

    Article  Google Scholar 

  • Gillis EA, Krebs CJ (2000) Survival of dispersing versus philopatric juvenile snowshoe hares: do dispersers die? Oikos 90:343–346

    Article  Google Scholar 

  • Gladfelter WB, Ogden JC, Gladfelter EH (1980) Similarity and diversity among coral reef fish communities: a comparison between tropical western Atlantic (Virgin Islands) and tropical central pacific (Marshall Islands) patch reefs. Ecology 61:1156–1168

    Article  Google Scholar 

  • Grober-Dunsmore R (2005) The application of terrestrial landscape ecology principles to the design and management of marine protected areas in coral reef ecosystems. Ph.D. dissertation submitted to University of Florida, Department of Fisheries and Aquatic Sciences, Florida, 219 pp.

    Google Scholar 

  • Grober-Dunsmore R, Beets J, Frazer T et al (2008) Influence of landscape structure on reef fish assemblages. Landsc Ecol 23(SI):37–53

    Article  Google Scholar 

  • Grober-Dunsmore R, Bonito V (2009) Movement of reef fishes inside and outside of Votua MPA, Fiji Islands. Report to NOAA Coral Reef International 2009 Coral Reef library, 24pp.

    Google Scholar 

  • Grober-Dunsmore R, Frazer T, Beets J et al (2004) The significance of adjacent habitats on reef fish assemblage structure: are relationships detectable and quantifiable at a landscape scale? Proc Gulf Caribb Fish Inst 55:713–734

    Google Scholar 

  • Grober-Dunsmore R, Frazer TK, Lindberg WJ et al (2007) Reef fish and habitat relationships in a Caribbean seascape: the importance of reef context. Coral Reefs 26:201–216

    Article  Google Scholar 

  • Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indexes of landscape spatial pattern. Landsc Ecol 7:101–110

    Article  Google Scholar 

  • Gutzwiller KJ (2002) Applying landscape ecology in biological conservation. Springer-Verlag, New York

    Book  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hargis CD, Bissonette JA, David JL (1998) The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc Ecol 13:167–186

    Article  Google Scholar 

  • Helfman GS, Meyer JL, McFarland WN (1982) The ontogeny of twilight migration patterns in grunts (Pisces, Haemulidae). Anim Behav 30:317–326

    Article  Google Scholar 

  • Holland KN, Peterson JD, Lowe CG et al (1993) Movements, distribution and growth rates of the white goatfish Mulloides flavolineatus in a fisheries conservation zone. Bull Mar Sci 52:982–992

    Google Scholar 

  • Hovel KA, Lipcius RN (2002) Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J Exp Mar Biol Ecol 271:75–98

    Article  Google Scholar 

  • Hovel KA, Regan HM (2008) Using an individual-based model to examine the roles of habitat fragmentation and behavior on predator–prey relationships in seagrass landscapes. Landsc Ecol 23(S1):75–89

    Article  Google Scholar 

  • Irlandi EA, Ambrose WG, Orlando BA (1995) Landscape ecology and the marine environment-how spatial configuration of seagrass habitat influences growth and survival of the Bay scallop. Oikos 72:307–313

    Article  Google Scholar 

  • Irlandi EA, Crawford MK (1997) Habitat linkages: the effect of intertidal saltmarshes and adjacent sub-tidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 110:222–230

    Article  Google Scholar 

  • Jelbart JE, Ross PM, Connolly RM (2006) Edge effects and patch size in seagrass landscapes: an experimental test using fish. Mar Ecol Prog Ser 319:93–102

    Article  Google Scholar 

  • Jelbart JE, Ross PM, Connolly RM (2007) Fish assemblages in seagrass beds are influenced by the proximity of mangrove forests. Mar Biol 150:993–1002

    Article  Google Scholar 

  • Karl JW, Heglund PJ, Garton EO et al (2000) Sensitivity of species habitat-relationship model performance to factors of scale. Ecol Appl 10:1690–1705

    Article  Google Scholar 

  • Kendall MS, Christensen JD, Hillis-Starr Z (2003) Multi-scale data used to analyze the spatial distribution of French grunts, Haemulon flavolineatum, relative to hard and soft bottom in a benthic landscape. Environ Biol Fish 66:19–26

    Article  Google Scholar 

  • Kendall MS, Kruer CR, Buja KR, Christensen JD, Finkbeiner M, Monaco ME (2002) Methods used to map the benthic habitats of Puerto Rico and the U.S. Virgin Islands. NOAA/NOS Biogeography Program Technical Re-port. Silver Spring, MD, p 45

    Google Scholar 

  • Kendall MS, Miller T (2008) The influence of thematic and spatial resolution on maps of a coral reef ecosystem. Marine Geodesy 31:75–102

    Google Scholar 

  • Kramer DL, Chapman MR (1999) Implications of fish home range size and relocation for marine reserve function. Environ Biol Fish 55:65–79

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Li HB, Reynolds JF (1993) A new contagion index to quantify spatial patterns of landscapes. Landsc Ecol 8:155–162

    Article  Google Scholar 

  • Li HB, Wu JG (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399

    Article  Google Scholar 

  • Lugendo BR, Nagelkerken I, Jiddawi N et al (2007b) Fish community composition of a tropical non-estuarine embayment in Zanzibar (Tanzania). Fish Sci 73:1213–1223

    CAS  Google Scholar 

  • Lugendo BR, Nagelkerken I, Kruitwagen G et al (2007a) Relative importance of mangroves as feeding habitat for fish: a comparison between mangrove habitats with different settings. Bull Mar Sci 80:497–512

    Google Scholar 

  • Lugendo BR, Nagelkerken I, van der Velde G et al (2006) The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: gut content and stable isotope analyses. J Fish Biol 69:1639–1661

    Article  CAS  Google Scholar 

  • Lunetta RS, Congalton RG, Fenstermaker LK et al (1991) Photogramm Eng Remote Sens 57:677–687

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. John Whiley & Sons, New York

    Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts Amherst, Massachusetts. http://www.umass.edu/landeco/research/fragstats/fragstats.html/

  • McGarigal K, McComb WC (1995) Relationships between landscape structure and breeding birds in the Oregon Coast Range. Ecol Monogr 65:235–260

    Article  Google Scholar 

  • Meyer CG, Holland KN, Papastamatiou YP (2007) Seasonal and diel movements of giant trevally Caranx ignobilis at remote Hawaiian atolls: implications for the design of marine protected areas. Mar Ecol Prog Ser 333:13–25

    Article  Google Scholar 

  • Meyer CG, Holland KN, Wetherbee BM et al (2000) Movement patterns, habitat utilization, home range size and site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a marine reserve. Environ Biol Fish 59:235–242

    Article  Google Scholar 

  • Micheli F, Peterson CH (1999) Estuarine vegetated habitats as corridors for predator movements. Conserv Biol 13:869–881

    Article  Google Scholar 

  • Mitchell MS, Lancia RA, Gerwin JA (2001) Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecol Appl 11:1692–1708

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Molles MC (1978) Fish species-diversity on model and natural reef patches-experimental insular bio-geography. Ecol Monogr 48:289–305

    Article  Google Scholar 

  • Mumby PJ (2006) Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol Conserv 128:215–222

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-Gonzalez JE et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  CAS  Google Scholar 

  • Mumby PJ, Harborne AR (1999) Development of a systematic classification scheme of marine habitats to facilitate regional management of Caribbean coral reefs. Biol Conserv 88:155–163

    Article  Google Scholar 

  • Nagelkerken I (2007) Are non-estuarine mangroves connected to coral reefs through fish migration? Bull Mar Sci 80:595–607

    Google Scholar 

  • Nagelkerken I, Dorenbosch M, Verberk WCEP et al (2000a) Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar Ecol Prog Ser 202:219–230

    Article  Google Scholar 

  • Nagelkerken I, Dorenbosch M, Verberk WCEP et al (2000b) Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar Ecol Prog Ser 194:55–64

    Article  Google Scholar 

  • Nagelkerken I, Faunce CH (2007) Colonisation of artificial mangroves by reef fishes in a marine seascape. Estuar Coast Shelf Sci 75:417–422

    Article  Google Scholar 

  • Nagelkerken I, Kleijnen S, Klop T et al (2001) Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Mar Ecol Prog Ser 214:225–235

    Article  Google Scholar 

  • Nagelkerken I, Roberts CM, van der Velde G et al (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305

    Article  Google Scholar 

  • Nagelkerken I, van der Velde G (2002) Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curacao (Netherlands Antilles)? Mar Ecol Prog Ser 245:191–204

    Article  Google Scholar 

  • Ogden JC, Ehrlich PR (1977) Behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Mar Biol 42:273–280

    Article  Google Scholar 

  • Ogden JC, Gladfelter EH (1983) Coral reefs, seagrass beds and mangroves: their interaction in the coastal zones of the Caribbean. UNESCO Rep Mar Sci 23:1–133

    Google Scholar 

  • Parrish JD (1989) Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar Ecol Prog Ser 58:143–160

    Article  Google Scholar 

  • Pearson SM, Turner MG, Gardner RH et al (1996) An organism-based perspective of habitat fragmentation. In: Szaro RC (ed) Biodiversity in managed landscapes: theory and practice. Oxford University Press, California

    Google Scholar 

  • Pither J, Taylor PD (1998) An experimental assessment of landscape connectivity. Oikos 83:166–174

    Article  Google Scholar 

  • Pittman SJ (2002) Linking fish and prawns to their environment in shallow-water marine landscapes. Ph thesis, Geographical Sciences Department and The Ecology Centre, University of Queensland, Brisbane, Australia

    Google Scholar 

  • Pittman SJ, Caldow C, Hile SD et al (2007b) Using seascape types to explain the spatial patterns of fish in the mangroves of SW Puerto Rico. Mar Ecol Prog Ser 348:273–284

    Article  Google Scholar 

  • Pittman SJ, Christensen JD, Caldow C et al (2007a) Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol Modell 204:9–21

    Article  Google Scholar 

  • Pittman SJ, McAlpine CA (2003) Movement of marine fish and decapod crustaceans: process, theory and application. Adv Mar Biol 44:205–294

    Article  CAS  Google Scholar 

  • Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish and prawns to their environment: a hierarchical landscape approach. Mar Ecol Prog Ser 283:233–254

    Article  Google Scholar 

  • Plotnick RE, Gardner RH, O’Neill RV (1993) Lacunarity indexes as measures of landscape tex-ture. Landsc Ecol 8:201–211

    Article  Google Scholar 

  • Possingham H, Ball I, Andelman S (2000) Mathematical models for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer-Verlag, New York

    Google Scholar 

  • Pressey RL (1999) Applications of irreplaceability analysis to planning and management problems. Parks 9:42–51

    Google Scholar 

  • Recksiek CW, Appeldoorn RS, Turningan RG (1991) Studies of fish traps as stock assessment devices on a shallow reef in south-western Puerto Rico. Fish Res 10:177–197

    Article  Google Scholar 

  • Riitters KH, O’Neill RV, Hunsaker CT et al (1995) A factor analysis of landscape pattern and structure metrics. Landsc Ecol 10:23–39

    Article  Google Scholar 

  • Robbins BD, Bell SS (1994) Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends Ecol Evol 9:301–304

    Article  CAS  Google Scholar 

  • Rothley KD, Rae C (2005) Working backwards to move forwards: graph-based connectivity metrics for reserve network selection. Environ Modell Assess 10:107–113

    Article  Google Scholar 

  • Rozas LP, Minello TJ (1998) Nekton use of salt marsh, seagrass, and nonvegetated habitats in a south Texas (USA) estuary. Bull Mar Sci 63:481–501

    Google Scholar 

  • Sale PF (2002) The science we need to develop for more effective management. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, London

    Google Scholar 

  • Saura S, Martinez-Millan J (2001) Sensitivity of landscape pattern metrics to map spatial extent. Photogramm Eng Remote Sens 67:1027–1036

    Google Scholar 

  • Schippers P, Verboom J, Knaapen JP et al (1996) Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS-based random walk model. Ecogeography 19:97–106

    Article  Google Scholar 

  • Schneider MF (2001) Habitat loss, fragmentation and predator impact: spatial implications for prey conservation. J Appl Ecol 38:720–735

    Article  Google Scholar 

  • Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225

    Article  Google Scholar 

  • Sheaves M (2005) Nature and consequences of biological connectivity in mangrove sytems. Mar Ecol Prog Ser 302:293–305

    Article  Google Scholar 

  • Sisk TD, Haddad NM, Ehrlich PR (1997) Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitats. Ecol Appl 7:1170–1180

    Article  Google Scholar 

  • Stamps JA, Buechner M, Krishnan VV (1987) The effects of edge permeability and habitat geometry on emigration from patches of habitat. Am Nat 129:533–552

    Article  Google Scholar 

  • Starr RM, Sala E, Ballesteros E et al (2007) Spatial dynamics of the Nassau grouper Epi-nephelus striatus in a Caribbean atoll. Mar Ecol Prog Ser 343:239–249

    Article  Google Scholar 

  • Taylor DS, Reyier EA, Davis WP et al (2007) Mangrove removal in the Belize cays: effects on mangrove-associated fish assemblages in the intertidal and subtidal. Bull Mar Sci 80:879–890

    Google Scholar 

  • Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Tewfik A, Bene C (2003) Effects of natural barriers on the spillover of a marine mollusc: implications for fisheries reserves. Aquat Conserv 13:473–488

    Article  Google Scholar 

  • Tischendorf L (2001) Can landscape indices predict ecological processes consistently? Landsc Ecol 16:235–254

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) How should we measure landscape connectivity? Landsc Ecol 15:633–641

    Article  Google Scholar 

  • Treml E, Halpin P, Urban D et al (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc Ecol 23(S1):19–36

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of the science? Annu Rev Ecol Evol Syst 36:319–344

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer-Verlag, New York

    Google Scholar 

  • Turner SJ, Hewitt JE, Wilkinson MR et al (1999) Seagrass patches and landscapes: the influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities. Estuaries 22:1016–1032

    Article  Google Scholar 

  • Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Biol Ecol 250:97–115

    Article  Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph theoretic perspective. Ecology 82:1205–1218

    Article  Google Scholar 

  • Urban DL (2005) Modeling ecological processes across scales. Ecology 86:1996–2006

    Article  Google Scholar 

  • Vanderklift MC, How J, Wernberg T et al (2007) Proximity to reef influences density of small predatory fishes, while type of seagrass influences intensity of their predation on crabs. Mar Ecol Prog Ser 340:235–243

    Article  Google Scholar 

  • Verweij MC, Nagelkerken I (2007) Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment. Hydrobiologia 592:257–270

    Article  Google Scholar 

  • Vierweij MC, Nagelkerken I, Hol KEM et al (2007) Space use of Lutjanus apodus including movement between a putative nursery and a coral reef. Bull Mar Sci 81:127–138

    Google Scholar 

  • Ward TJ, Vanderklift MA, Nicholls AO et al (1999) Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecol Appl 9:691–698

    Article  Google Scholar 

  • Wiens J (1989) Spatial scaling in ecology. Funct Ecol 3:385–39

    Article  Google Scholar 

  • Wiens JA (2006) Connectivity research – what are the issues? In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Wiens JA, Milne BT (1989) Scaling of landscapes in landscape ecology, or landscape ecology from a beetle’s perspective. Landsc Ecol 3:87–96

    Article  Google Scholar 

  • Wiens JA, Stenseth NC, Vanhorne B et al (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380

    Article  Google Scholar 

  • Wiens JA, Van Horne B, Noon BR (2002) Landscape structure and multi-scale management. In: Liu J, Taylor WW (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge

    Google Scholar 

  • With KA (1997) The application of neutral landscape models in conservation biology. Conserv Biol 11:1069–1080

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • With KA, Crist TO (1995) Critical thresholds in species responses to landscape structure. Ecology 76:2446–2459

    Article  Google Scholar 

  • With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169

    Article  Google Scholar 

  • Wu JG (2006) Landscape ecology, cross-disciplinarity, and sustainability science. Landsc Ecol 21:1–4

    Article  CAS  Google Scholar 

  • Zeller DC (1998) Spawning aggregations: patterns of movement of the coral trout Plectropomus leopardus (Serranidae) as determined by ultrasonic telemetry. Mar Ecol Prog Ser 162:253–263

    Article  Google Scholar 

  • Zeller DC, Russ GR (1998) Marine reserves: patterns of adult movement of the coral trout (Plectropomus leopardus (Serranidae)). Can J Fish Aquat Sci 55:917–924

    Article  Google Scholar 

Download references

Acknowledgments

The support of the National Marine Fisheries Service, Fisheries Ecology Division at the Southwest Fisheries Science Center in Santa Cruz, CA, is greatly appreciated. In particular, Churchill Grimes was instrumental in providing support for Dr. Rikki Dunsmore. In addition, insights from Chris Jeffrey and Mark Monaco of NOAA’s Center for Coastal Monitoring and Assessment were valuable. The Biogeography Branch coral reef monitoring and mapping activities are supported by funding from the Coral Reef Conservation Program (CRCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikki Grober-Dunsmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grober-Dunsmore, R., Pittman, S.J., Caldow, C., Kendall, M.S., Frazer, T.K. (2009). A Landscape Ecology Approach for the Study of Ecological Connectivity Across Tropical Marine Seascapes. In: Nagelkerken, I. (eds) Ecological Connectivity among Tropical Coastal Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2406-0_14

Download citation

Publish with us

Policies and ethics