Skip to main content

Rational Design of Insect Control Agents: The PK/PBAN Family as a Study Case

  • Chapter
  • First Online:
Biorational Control of Arthropod Pests

Abstract

The success of modern agriculture in developing and maintaining high-yield crops depends strongly on controlling insect pests by means of heavy use of insecticides, and at present organo-synthetic chemical insecticides remain the main weapon in this armory. However, in recent decades, uncontrolled application of chemical insecticides has led to acquisition of resistance by insects, has contaminated the environment with toxic residues that endanger humans and other life forms, and has disrupted the ecological balance in and around cultivated fields. The growing concern regarding the toxic effects of insecticides has led to the implementation of strict regulations in the Western World, and these are being adopted by other countries too. These regulations limit the application of some organo-chemical insecticides and ban continued use of the more toxic ones.

Contribution from the Agricultural Research Organization, the Volcani CenterBet Dagan, Israel 510/08, 2008 series

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernathy RL, Nachman RJ, Teal PEA, Yamashita O, Tumlinson JH (1995) Pheromonotropic activity of naturally-occurring pyrokinin insect neuropeptides (FXPRLamide) in Helicoverpa zea. Peptides 16: 215–219

    CAS  PubMed  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, et al (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185–2195

    PubMed  Google Scholar 

  • Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9: 963–978

    CAS  PubMed  Google Scholar 

  • Altstein M (2001) Insect neuropeptide antagonists. Biopolymers 60: 460–473

    CAS  PubMed  Google Scholar 

  • Altstein M (2003) Novel insect control agents based on neuropeptide antagonists – The PK/PBAN family as a case study. J Mol Neurosci 22: 147–157

    CAS  Google Scholar 

  • Altstein M, Nässel DR (2007) Neuropeptide signaling in insects. In: Geary TG, Maule AG, eds. Neuroscience Systems as Targets for Parasite and Pest Control. Austin, TX: Landes Bioscience and Springer Sciences, In press

    Google Scholar 

  • Altstein M, Gazit Y, Dunkelblum E (1993) Neuroendocrine control of sex-pheromone biosynthesis in Heliothis peltigera. Arch Insect Biochem Physiol 22: 153–168

    CAS  Google Scholar 

  • Altstein M, Dunkelblum E, Gabay T, Ben Aziz O, Schafler I, Gazit Y (1995) PBAN-Induced sex-pheromone biosynthesis in Heliothis-peltigera: Structure, dose, and time-dependent analysis. Archives of Insect Biochemistry and Physiology 30: 307–319

    CAS  Google Scholar 

  • Altstein M, Gazit Y, Ben Aziz O, Gabay T, Marcus R, Vogel Z, Barg J (1996) Induction of cuticular melanization in Spodoptera littoralis larvae by PBAN/MRCH: Development of a quantitative bioassay and structure function analysis. Arch Insect Biochem Physiol 31: 355–370

    CAS  Google Scholar 

  • Altstein M, Dunkelblum E, Gazit Y, Ben Aziz O, Gabay T, Vogel Z, Barg J (1997) Structure-function analysis of PBAN/MRCH: a basis for antagonist design. Modern Agriculture and the Environment 111–118

    Google Scholar 

  • Altstein M, Ben-Aziz O, Daniel S, Schefler I, Zeltser I, Gilon C (1999a) Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide, inhibit sex pheromone biosynthesis in moths. J Biol Chem 274: 17573–17579

    CAS  PubMed  Google Scholar 

  • Altstein M, Gabay T, Ben-Aziz O, Daniel S, Zeltser I, Gilon C (1999b) Characterization of a putative pheromone biosynthesis-activating neuropeptide (PBAN) receptor from the pheromone gland of Heliothis peltigera. Invert Neurosci 4: 33–40

    CAS  PubMed  Google Scholar 

  • Altstein M, Ben-Aziz O, Schefler I, Zeltser I, Gilon C (2000) Advances in the application of neuropeptides in insect control. Crop Protection 19: 547–555

    CAS  Google Scholar 

  • Altstein M, Ben-Aziz O, Daniel S, Zeltser I, Gilon C (2001) Pyrokinin/PBAN radio-receptor assay: development and application for the characterization of a putative receptor from the pheromone gland of Heliothis peltigera. Peptides 22: 1379–1389

    CAS  PubMed  Google Scholar 

  • Altstein M, Ben-Aziz O, Zeltser I, Bhargava K, Davidovitch M, Strey A, Pryor N, Nachman RJ (2007) Inhibition of PK/PBAN-mediated functions in insects: Discovery of selective and non-selective inhibitors. Peptides 28: 574–584

    CAS  PubMed  Google Scholar 

  • Altstein M, Ben-Aziz O, Bhargava K, Li Q, Martins-Green M (2003) Histochemical localization of the PBAN receptor in the pheromone gland of Heliothis peltigera. Peptides 24: 1335–1347

    CAS  PubMed  Google Scholar 

  • Altstein M (2004) Role of neuropeptides in sex pheromone production in moths. Peptides 25: 1491–1501

    CAS  PubMed  Google Scholar 

  • Ben-Aziz O, Zeltser I, Altstein M (2005) PBAN selective antagonists: inhibition of PBAN induced cuticular melanization and sex pheromone biosynthesis in moths. J Insect Physiol 51: 305–314

    CAS  PubMed  Google Scholar 

  • Ben-Aziz O, Zeltser I, Bhargava K, Dammes JV, Davidovitch M, Altstein M (2006) Backbone cyclic pheromone biosynthesis activating neuropeptide (PBAN) antagonists: Inhibition of melanization in the moth Spodoptera littoralis (Insecta, Lepidoptera). Peptides 27: 2147–2156

    CAS  PubMed  Google Scholar 

  • Ben Yosef T, Bronshtein A, Ben Aziz O, Davidovitch M, Tirosh I, Altstein M (2009) PBAN receptor: employment of anti-receptor antibodies for its characterization and for development of a microplate binding assay. J. of Insect Physiol. (In Press)

    Google Scholar 

  • Cazzamali G, Torp M, Hauser F, Williamson M, Grimmelikhuijzen CJP (2005) The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochemical and Biophysical Research Communications 335: 14–19

    CAS  PubMed  Google Scholar 

  • Choi MY, Tanaka M, Kataoka H, Boo KS, Tatsuki S (1998) Isolation and identification of the cDNA encoding the pheromone biosynthesis activating neuropeptide and additional neuropeptides in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochemis Mol Biol 28: 759–766

    CAS  Google Scholar 

  • Choi MY, Rafaeli A, Jurenka RA (2001) Pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res 306: 459–465

    CAS  PubMed  Google Scholar 

  • Choi MY, Fuerst EJ, Rafaeli A, Jurenka R (2003) Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Academy Sci USA 100: 9721–9726

    CAS  Google Scholar 

  • Choi MY, Lee JM, Han KS, Boo KS (2004) Identification of a new member of PBAN family and immuno reactivity in the central nervous system from Adoxophyes sp (Lepidoptera: Tortricidae). Insect Biochem Mol Biol 34: 927–935

    CAS  PubMed  Google Scholar 

  • Cody WL, He JX, DePue PL, Waite LA, Leonard DM, Sefler AM, Kaltenbronn JS, Haleen SJ, Walker DM, Flynn MA, Welch KM, Reynolds EE, Doherty AM (1995) Structure-activity-relationships of the potent combined endothelin-A endothelin-B receptor antagonist Ac-Ddip(16)-Leu-Asp-Ile-Ile-Trp(21) – development of endothelin-B receptor-selective antagonists. J Med Chem 38: 2809–2819

    CAS  PubMed  Google Scholar 

  • Collins N, Flippen-Anderson JL, Haaseth RC, Deschamps JR, George C, Kövér K, Hruby VJ (1996) Conformational determinants of agonist versus antagonist properties of [D-Pen(2),D-Pen(5)]enkephalin (DPDPE) analogs at opioid receptors. Comparison of x-ray crystallographic structure, solution H-1 NMR data, and molecular dynamic simulations of [L-Ala(3)]DPDPE and [D-Ala(3)]DPDPE. J Am Chem Soc 118: 2143–2152

    CAS  Google Scholar 

  • Coy DH, Taylor J, Jiang NY, Kim SH, Wang LH, Huang SC, Moreau JP, Gardner JD, Jensen RT (1989) Short-chain pseudopeptide bombesin receptor antagonists with enhanced binding affinities for pancreatic acinar and Swiss 3T3 cells display strong antimitotic activity. J Biol Chem 264: 14691–14697

    CAS  PubMed  Google Scholar 

  • De Loof A (2008) Ecdysteroids, juvenile hormone and insect neuropeptides: Recent successes and remaining major challenges. Gen Comp Endocrinol 155: 3–13

    PubMed  Google Scholar 

  • Duportets L, Gadenne C, Couillaud F (1999) A cDNA, from Agrotis ipsilon, that encodes the pheromone biosynthesis activating neuropeptide (PBAN) and other FXPRL peptides. Peptides 20: 899–905

    CAS  PubMed  Google Scholar 

  • Folkers K, Jakanson R, Horig J, Xu JC, Leander S (1984) Biological evaluation of substance-P antagonists. British J Pharmacol 83: 449–456

    CAS  Google Scholar 

  • Fónagy A, Schoofs L, Matsumotor S, De Loof A, Mitsui TM (1992) Functional cross-reactivities of some locustamyotropins and Bombyx pheromone biosynthesis activating neuropeptide. J Insect Physiol 38: 651–657

    Google Scholar 

  • Gade G (1997) The explosion of structural information on insect neuropeptides. Progress in the Chemistry of Organic Natural Products 71: 1–128

    CAS  PubMed  Google Scholar 

  • Gäde G, Marco HG (2006) Structure, function and mode of action of select arthropod neuropeptides. Studies in natural products chemistry 33: 69–139

    Google Scholar 

  • Gazit Y, Dunkelblum E, Benichis M, Altstein M (1990) Effect of synthetic PBAN and derived peptides on sex-pheromone biosynthesis in Heliothis peltigera (Lepidoptera, Noctuidae). Insect Biochemi 20: 853–858

    CAS  Google Scholar 

  • Giannis A (1993) Peptidomimetics for receptor ligands discovery, development, and medical perspectives. Angewandte Chemie-International Edition in English 32: 1244–1267

    Google Scholar 

  • Gilon C, Halle D, Chorev M, Selinger Z, Byk G (1991) Backbone cyclization – a new method for conferring conformational constraint on peptides. Biopolymers 31: 745–750

    CAS  PubMed  Google Scholar 

  • Gilon C, Zeltser I, Rashti-Bahar V, Muller D, Bitan G, Halle D, Bar-Akiva G, Selinger Z, Byk G (1993) Backbone cyclization as a tool for imposing conformational constraint on peptides. Peptide Chem 482–484

    Google Scholar 

  • Gilon C, Muller D, Bitan G, Salitra Y, Goldwasser I, Hornik V (1998a) Cycloscan: conformational libraries of backbone cyclic peptides. In: Epton R, Ramage R, eds. Peptide Chemistry, Structure and Biology. England: Mayflower scientific 423–424

    Google Scholar 

  • Gilon C, Huonges, M, Matha B, Gellerman G, Homik V, Rosenfeld R, Afargan M, Amitay O, Ziv O, Feller E, Gamliel A, Shohat D, Wanger M, Arad O, Kessler H (1998b) A backbone-cylic, receptor 5-selective somatostatin analogue: Synthesis, bioactivity, and nuclear magnetic resonance conformational analysis. J Med Chem 41: 919–929

    CAS  PubMed  Google Scholar 

  • Goodman M (1995) Peptidomimetics for Drug Design. In: Wolff ME, ed. Burger’s Medicinal Chemistry and Drug Discovery. 5th ed. Wiley & Sons 803–861

    Google Scholar 

  • Grdadolnik SG, Mierke DF, Byk G, Zeltser I, Gilon C, Kessler H (1994) comparison of the conformation of active and nonactive backbone cyclic analogs of substance-P as a tool to elucidate features of the bioactive conformation – NMR and molecular-dynamics in DMSO and water. J Med Chem 37: 2145–2152

    CAS  PubMed  Google Scholar 

  • Hariton A, Ben-Aziz O, Davidovitch M, Nachman RJ, Altstein M (2009a) Bioavailability of insect neuropeptides: The PK/PBAN family as a case study. Peptides, 30: 1034–1041

    CAS  PubMed  Google Scholar 

  • Hariton A, Ben-Aziz O, Davidovitch M, Zubrzak P, Nachman RJ, Altstein M (2009b) Bioavailability of β-amino acid and C-terminally derived PK/PBAN analogs. doi:10.1016/j.peptides.2009.05.011

    Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Progr Neurobiol 80: 1–19

    CAS  Google Scholar 

  • Heinz-Erian P, Coy DH, Tamura M, Jones SW, Gardener JD, Jensen RT (1987) [D-Phe12]Bombesin analogs – a new class of bombesin receptor antagonists. Am J Physiol 252: G439–G442

    CAS  PubMed  Google Scholar 

  • Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11: 1126–1142

    CAS  PubMed  Google Scholar 

  • Hiruma K, Matsumoto S, Isogai A, Suzuki A (1984) Control of ommochrome synthesis by both juvenile-hormone and melanization hormone in the cabbage armyworm, Mamestra brassicae. J Comparative Physiol 154: 13–21

    CAS  Google Scholar 

  • Hökfelt T, Bartfai T, Bloom F (2003) Neuropeptides: opportunities for drug discovery. Lancet Neurol 2: 463–472

    PubMed  Google Scholar 

  • Holman GM, Cook BJ, Nachman RJ (1986) Isolation, primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae. Comparative Biochem Physiol C–Pharmacology Toxicology & Endocrinology 85: 219–224

    CAS  Google Scholar 

  • Holman GM, Nachman RJ, Schoofs L, Hayes TK, Wright MS, De Loof A (1991) The Leucophaea maderae hindgut preparation – a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem 21: 107–112

    CAS  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129–135

    CAS  PubMed  Google Scholar 

  • Homma T, Watanabe K, Tsurumaru S, Kataoka H, Imai K, Kamba M, Niimi T, Yamashita O, Yaginuma T (2006) G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem Biophys Res Comm 344: 386–393

    CAS  PubMed  Google Scholar 

  • Hong B, Zhang ZF, Tang SM, Yi YZ, Zhang TY, Xu WH (2006) Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Biochim et Biophys Acta–Gene Structure and Expression 1759: 177–185

    CAS  Google Scholar 

  • Hruby VJ, Alobeidi F, Kazmierski W (1990) Emerging approaches in the molecular design of receptor-selective peptide ligands – conformational, topographical and dynamic considerations. Biochem Jo 268: 249–262

    CAS  Google Scholar 

  • Hruby VJ (1992) Strategies in the development of peptide antagonists. Progr Brain Res 92: 215–224

    CAS  Google Scholar 

  • Hummon AB, Amare A, Sweedler JV (2006) Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom Rev 25: 77–98

    CAS  PubMed  Google Scholar 

  • Hull JJ, Ohnishi A, Moto K, Kawasaki Y, Kurata R, Suzuki MG, Matsumoto S (2004) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori – Significance of the carboxyl terminus in receptor internalization. J Biologi Chem 279: 51500–51507

    CAS  Google Scholar 

  • Hull JJ, Ohnishi A, Matsumoto S (2005) Regulatory mechanisms underlying pheromone biosynthesis activating neuropeptide (PBAN)-induced internalization of the Bombyx mori PBAN receptor. Biochemi Biophys Res Commun 334: 69–78

    CAS  Google Scholar 

  • Iglesias F, Marco P, Francois MC, Camps F, Fabrias G, Jacquin-Joly E (2002) A new member of the PBAN family in βSpodoptera littoralis: molecular cloning and immunovisualisation in scotophase hemolymph. Insect Biochem Mol Biol 32: 901–908

    CAS  PubMed  Google Scholar 

  • Imai K, Konno T, Nagasawa Y, Komiya T, Isobe M, Koga K, Hasegawa K, Yamashita O (1991) Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc Japan Academy Series B–Physical and Biological Sciences 67: 98–101

    CAS  Google Scholar 

  • Iversen A, Cazzamali G, Williamson M, Frank Hauser F, and Grimmelikhuijzen CJP (2002) Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and-2. Biochem Biophys Res Commun 299: 628–633

    CAS  PubMed  Google Scholar 

  • Jacquin-Joly E, Burnet M, Francois MC, Ammar D, Nagman LMP, Descoins C (1998) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of Mamestra brassicae: a new member of the PBAN family. Insect Biochem Mol Biol 28: 251–258

    CAS  PubMed  Google Scholar 

  • Jing TZ, Wang ZY, Qi FH, Liu KY (2007) Molecular characterization of diapause hormone and pheromone biosynthesis activating neuropeptide from the black-back prominent moth, βClostera anastomosis (L.) (Lepidoptera, Notodontidae). Insect Biochem Mol Biol 37: 1262–1271

    CAS  PubMed  Google Scholar 

  • Kamimoto S, Nohara R, Ichikawa T (2006) Coordination between the electrical activity of developing indirect flight muscles and the firing activity of a population of neurosecretory cells in the silkmoth, Bombyx mori. Zoological Science 23: 449–457

    PubMed  Google Scholar 

  • Kasher R, Oren DS, Barda Y, Gilon C (1999) Miniaturized proteins: the backbone cyclic proteinomimetic approach. Journal of Molecular Biology 292: 421–429

    CAS  PubMed  Google Scholar 

  • Kawai T, Ohnishi A, Suzuki MG, Fujii T, Matsuoka K, Kato I, Matsumoto S, Ando T (2007) Identification of a unique pheromonotropic neuropeptide including double FXPRL motifs from a geometrid species, Ascotis selenaria cretacea, which produces an epoxyalkenyl sex pheromone. Insect Biochem Mol Biol 37: 330–337

    CAS  PubMed  Google Scholar 

  • Kawano T, Kataoka H, Nagasawa H, Isogai A, Suzuki A (1992) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of the silkworm, Bombyx mori. Biochem Biophys Res Commun 189: 221–226

    CAS  PubMed  Google Scholar 

  • Kessler H, Klein M, Muller A, Wagner K, Bats JW, Ziegler K, Frimmer M (1986) Conformational Prerequisites for the in Vitro Inhibition of Cholate Uptake in Hepatocytes by Cyclic Analogs of Antamanide and Somatostatin. Angewandte Chemie-International Edition in English 25: 997–999

    Google Scholar 

  • Kean L, Cazenave W, Costes L, Broderick KE, Graham S, Pollock VP, Davies SA, Veenstra JA, Dow JAT (2002) Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol–Regulatory Integrative and Comparative Physiology 282: R1297–R1307

    CAS  Google Scholar 

  • Kim YJ, Nachman RJ, Aimanova K, Gill S, Adams M (2008) The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure-activity relationships of ligand analogs. Peptides 29: 268–275

    CAS  PubMed  Google Scholar 

  • Kitamura A, Nagasawa H, Kataoka H, Inoue T, Matsumoto S, Ando T, Suzuki A (1989) Amino-acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem Biophys Res Commun 163: 520–526

    CAS  PubMed  Google Scholar 

  • Kochansky JP, Raina AK, Kempe TG (1997) Structure–activity relationships in C-terminal fragment analogs of pheromone biosynthesis activating neuropeptide in Helicoverpa zea. Arch Insect Biochem Physiol 35: 315–322

    CAS  PubMed  Google Scholar 

  • Kuniyoshi H, Nagasawa H, Ando T, Suzuki A, Nachman RJ, Holman MG (1992a) Cross-activity between pheromone biosynthesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci Biotechnol Biochem 56: 167–168

    CAS  PubMed  Google Scholar 

  • Kuniyoshi H, Nagasawa H, Ando T, Suzuki A (1992b) N-terminal modified analogs of C-terminal fragments of PBAN with pheromonotropic activity. Insect Biochem Mol Biol 22: 399–403

    CAS  Google Scholar 

  • Lee DW, Boo KS (2005) Molecular characterization of pheromone biosynthesis activating neuropeptide from the diamondback moth, Plutella xylostella (L.). Peptides 26: 2404–2411

    CAS  PubMed  Google Scholar 

  • Leff P (1995) The 2-State Model of Receptor Activation. Trends Pharmacol Sci 16: 89–97

    CAS  PubMed  Google Scholar 

  • Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Arakane Y, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJP, Park Y (2008) Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18: 113–122

    CAS  PubMed  Google Scholar 

  • Liu M, Zhang TY, Xu WH (2005) A cDNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in Helicoverpa armigera: Molecular characterization and expression analysis associated with pupal diapause. Comparative Biochem Physiol C–Toxicology and Pharmacology 141: 168–176

    Google Scholar 

  • Llinares M, Devin C, Chloin O, Azay J, Noel-Artis AM, Bernad N, Fehrentz JA, Martinez J (1999) Syntheses and biological activities of potent bombesin receptor antagonists. J Peptide Res 53: 275–283

    CAS  Google Scholar 

  • Ma PWK, Knipple DC, Roelofs WL (1994) Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis-activating neuropeptide and other neuropeptides. Proc Natl Academy of Sci USA 91: 6506–6510

    CAS  Google Scholar 

  • Ma PWK, Roelofs WL, Jurenka RA (1996) Characterization of PBAN and PBAN-encoding gene neuropeptides in the central nervous system of the corn earworm moth, Helicoverpa zea. J Insect Physiol 42: 257–266

    CAS  Google Scholar 

  • Maretto S, Schievano E, Mammi S, Bisello A, Nakamoto C, Rosenblatt M, Chorev M, Peggion E (1998) Conformational studies of a potent Leu(11),D-Trp(12)-containing lactam-bridged parathyroid hormone-related protein-derived antagonist. J Peptide Res 52: 241–248

    CAS  Google Scholar 

  • Masler EP, Raina AK, Wagner RW, Kochansky JP (1994) Isolation and Identification of A Pheromonotropic Neuropeptide from the Brain-Subesophageal Ganglion Complex of Lymantria dispar - A New Member of the PBAN Family. Insect Biochem Mol Biol 24: 829–836

    CAS  PubMed  Google Scholar 

  • Matsumoto S, Isogai A, Suzuki A, Ogura N, Sonobe H (1981) Purification and properties of the melanization and reddish colouration hormone (MRCH) in the armyworm, Leucania separata (Lepidoptera). Insect Biochem 11: 725–733

    CAS  Google Scholar 

  • Matsumoto S, Kitamura A, Nagasawa H, Kataoka H, Orikasa C, Mitsui A, Suzuki A (1990) Functional diversity of a neurohormone produced by the subesophageal ganglion: Molecular identity of melanization and reddish coloration hormone and pheromone biosynthesis activating neuropeptide. J Insect Physiol 36: 427–432

    CAS  Google Scholar 

  • Matsumoto S, Fonagy A, Kurihara M, Uchiumi K, Nagamine T, Chijimatsu M, Mitsui T (1992) Isolation and primary structure of a novel pheromonotropic neuropeptide structurally related to leucopyrokinin from the armyworm larvae, Pseudaletia separata. Biochem Biophys Res Commun 182: 534–539

    CAS  PubMed  Google Scholar 

  • Meng XJ, Wahlstrom G, Immonen T, Kolmer M, Tirronen M, Predel R, Kalkkinen N, Heino TI, Sariola H, Roos C (2002) The Drosophila hugin gene codes for myostimulatory and ecdysis-modifying neuropeptides. Mech Dev 117: 5–13

    CAS  PubMed  Google Scholar 

  • Morita M, Hatakoshi M, Tojo S (1988) Hormonal-control of cuticular melanization in the common cutworm, Spodoptera litura. J Insect Physiol 34: 751–758

    CAS  Google Scholar 

  • Nachman RJ, Holman GM (1991) Myotropic insect neuropeptide families from the cockroach Leucophaea-Maderae – structure–activity relationships. ACS Symposium Series 453: 194–214

    CAS  Google Scholar 

  • Nachman RJ, Holman GM, Cook BJ (1986) Active fragments and analogs of the insect neuropeptide leucopyrokinin: structure-function studies. Biochem Biophys Res Commun 137: 936–942

    CAS  PubMed  Google Scholar 

  • Nachman RJ, Holman GM, Schoofs L, Yamashita O (1993) Silkworm diapause induction activity of myotropic pyrokinin (FXPRLamide) insect neuropeptides. Peptides 14: 1043–1048

    CAS  PubMed  Google Scholar 

  • Nachman RJ, Zdarek J, Holman MG, Hayes TK (1997) Pupariation acceleration in fleshfly (Sarcophaga bullata) larvae by the pyrokinin/PBAN neuropeptide family – Structure-activity relationships. Ann the N Y Academy Sci 814: 73–79

    CAS  Google Scholar 

  • Nachman RJ, Ben-Aziz O, Davidovitch M, Zubrzak P, Isaac RE, Strey A, Reyes-Rangel G, Juaristi E, Williams HJ, Altstein M (2009a) Biostable[A2] β-amino acid PK/PBAN analogs: Agonist and antagonist properties. Peptides, doi:10.1016/j.peptides.2008.11.007, 2009; 30: 606–615

    Google Scholar 

  • (2009b) A PK/PBAN analog containing a novel dihydroimidazoline, trans-Pro mimic is a pure, selective melanotropic agonist in Egyptian cotton leaf worm (Spodoptera littoralis). Frontiers in Biosci, in press

    Google Scholar 

  • Nachman RJ, Teal PEA, Ben-Aziz O, Davidovitch M, Zubrzak P, Altstein M (2009c) An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect. Peptides, doi:10.1016/j.peptides.2008.09.024, 2009; 30: 616–621

    Google Scholar 

  • Nagasawa H, Kuniyoshi H, Arima R, Kawano T, Ando T, Suzuki A (1994) Structure and Activity of Bombyx PBAN. Archi Insect Biochem Physiol 25: 261–270

    CAS  Google Scholar 

  • Nassel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326: 1–24

    PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D, et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 1718–1723

    CAS  PubMed  Google Scholar 

  • Ogura N (1975) Induction of cuticular melanization in larvae of armyworm, Leucania separata Walker (Lepidoptera: Noctuidae), by implantation of ganglia of the silkworm, Bombyx mori, (Lepidoptera: Bombycidae). Appl Entomol Zool 3: 216–219

    Google Scholar 

  • Ogura N, Saito T (1972) Hormonal function controlling pigmentation of the integument in the common armyworm larvae, Leucania separata Walker. Appl Entomol Zool 7: 239–242

    Google Scholar 

  • Olsen SS, Cazzamali G, Williamson M, Grimmelikhuijzen CJP, Hauser F (2007) Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 362: 245–251

    CAS  PubMed  Google Scholar 

  • Piercey MF, Dobry PJK, Schroeder LA, Einspahr FJ (1981) Behavioral evidence that substance-P may be a spinal-cord sensory neurotransmitter. Brain Research 210: 407–412

    CAS  PubMed  Google Scholar 

  • Predel R, Eckert M (2000) Tagma-specific distribution of FXPRLamides in the nervous system of the American cockroach. J Comparative Neurol 419: 352–363

    CAS  Google Scholar 

  • Predel R, Kellner R, Nachman RJ, Holman GM, Rapus J, Gäde G (1999) Differential distribution of pyrokinin-isoforms in cerebral and abdominal neurohemal organs of the American cockroach. Insect Biochem Mol Biol 29: 139–144

    CAS  PubMed  Google Scholar 

  • Predel R, Eckert M, Pollak E, Molnar J, Scheiber O, Neupert S (2007) Peptidomics of identified neurons demonstrates a highly differentiated expression pattern of FXPRLamides in the neuroendocrine system of an insect. J Comparative Neurol 500: 498–512

    CAS  Google Scholar 

  • Rafaeli A (2002) Neuroendocrine control of pheromone biosynthesis in moths. Int Rev Cytol – A Survey of Cell Biology 213: 49–91

    CAS  Google Scholar 

  • Rafaeli A (2005) Mechanisms involved in the control of pheromone production in female moths: recent developments. Entomologia Experimentalis et Applicata 115: 7–15

    CAS  Google Scholar 

  • Rafaeli A, Jurenka R (2003) PBAN regulation of pheromone biosynthesis in female moths. Insect Pheromone Biochemistry and Molecular Biology. New York: Academic Press 107–36

    Google Scholar 

  • Raina AK, Kempe TG (1990) A pentapeptide of the c-terminal sequence of PBAN with pheromonotropic activity. Insect Biochem 20: 849–851

    CAS  Google Scholar 

  • Raina AK, Kempe TG (1992) Structure Activity Studies of PBAN of Helicoverpa zea (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 22: 221–225

    CAS  Google Scholar 

  • Raina AK, Gade G (1988) Insect peptide nomenclature. Insect Biochem 18: 785–787

    CAS  Google Scholar 

  • Raina AK, Klun JA (1984) Brain factor control of sex-pheromone production in the female corn-earworm moth. Science 225: 531–533

    CAS  PubMed  Google Scholar 

  • Raina AK, Jeffe H, Kempe TG, Keim P, Blacher RW, Fales HM, Riley CT, Klun JA, Ridgway RL, Hayes DK (1989) Identification of a neuropeptide hormone that regulates sex-pheromone production in female moths. Science 244: 796–798

    CAS  PubMed  Google Scholar 

  • Rees RWA, Foell TJ, Chai SY, Grant N (1974) Synthesis and biological-activities of analogs of luteinizing hormone-releasing hormone (LH-RH) modified in position 2. J Med Chem 17: 1016–1019

    CAS  PubMed  Google Scholar 

  • Rhaleb NE, Telemaque S, Roussi N, Dion S, Jukic D, Drapeau G, Regoli D (1991) Structure-activity studies of bradykinin and related peptides – B2-receptor antagonists. Hypertension 17: 107–115

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Dubreuil P, Laur J, Bali JP, Martinez J (1987) Synthesis and biological-activity of partially modified retro-inverso pseudopeptide derivatives of the C-terminal tetrapeptide of gastrin. J Med Chem 30: 758–763

    CAS  PubMed  Google Scholar 

  • Rosell S, Bjorkroth U, Xu JC, Folkers K (1983) The pharmacological profile of a substance P (SP) antagonist. Evidence for the existence of subpopulations of SP receptors. Acta Physiol Scand 117: 445–449

    CAS  Google Scholar 

  • Rosenkilde C, Cazzamali G, Williamson M, Hauser F, Søndergaard L, DeLotto R, Grimmelikhuijzen CJ (2003) Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochem Biophys Res Commun 309: 485–494

    CAS  PubMed  Google Scholar 

  • Sato Y, Oguchi M, Menjo N, Imai K, Saito Ikeda M, Isobe M, Yamashita O (1993) precursor polyprotein for multiple neuropeptides secreted from the subesophageal ganglion of the silkworm Bombyx-mori – characterization of the cDNA-encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Academy of Sci USA 90: 3251–3255

    CAS  Google Scholar 

  • Sato Y, Ikeda M, Yamashita O (1994) Neurosecretory-cells expressing the gene for common precursor for diapause hormone and pheromone biosynthesis-activating neuropeptide in the subesophageal ganglion of the silkworm, Bombyx-Mori. General Comparative Endocrinol 96: 27–36

    CAS  Google Scholar 

  • Saulitis J, Mierke DF, Byk G, Gilon C, Kessler H (1992) Conformation of cyclic analogs of substance-P – NMR and molecular-dynamics in dimethyl-sulfoxide. J Am Chem Soc 114: 4818–4827

    CAS  Google Scholar 

  • Sawyer WH, Pang PKT, Seto J, McEnroe M (1981) Vasopressin analogs that antagonize anti-diuretic responses by rats to the anti-diuretic hormone. Science 212: 49–51

    CAS  PubMed  Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De loof A (1990a) Isolation, identification and synthesis of locustamyotropin (Lom-Mt), a novel biologically-active insect peptide. Peptides 11: 427–433

    CAS  PubMed  Google Scholar 

  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A (1990b) Isolation, identification and synthesis of locustamyotropin-II, an additional neuropeptide of Locusta migratoria – member of the cephalomyotropic peptide family. Insect Biochem 20: 479–484

    CAS  Google Scholar 

  • Schoofs L, Holman MG, Nachman RJ, Hayes TK, De Loof A (1991) Isolation, primary structure, and synthesis of locustapyrokinin – a myotropic peptide of Locusta migratoria. General Comparative Endocrinol 81: 97–104

    CAS  Google Scholar 

  • Schoofs L, Holman GM, Nachman RJ, Proost P, Van Damme J, De Loof A (1993a) Isolation, identification and synthesis of locustapyrokinin-II from Locusta migratoria, another member of the FXPRL-amide peptide family. Comparative Biochem Physiol C–Pharmacology Toxicology and Endocrinology 106: 103–109

    CAS  Google Scholar 

  • Schoofs L, Vandenbroeck J, Deloof A (1993b) The myotropic peptides of Locusta migratoria: Structures, distribution, functions and receptors. Insect Biochem Mol Biol 23: 859–881

    CAS  PubMed  Google Scholar 

  • Shiomi K, Fujiwara Y, Yasukochi Y, Kajiura Z, Nakagaki M, Yaginuma T (2007) The Pitx homeobox gene in Bombyx mori: Regulation of DH-PBAN neuropeptide hormone gene expression. Mol Cell Neurosci 34: 209–218

    CAS  PubMed  Google Scholar 

  • Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24: 815–825

    CAS  PubMed  Google Scholar 

  • Sun JS, Zhang QR, Zhang TY, Zhu ZL, Zhang HM, Teng MK, Niu LW, Xu WH (2005) Developmental expression of FXPRLamide neuropeptides in peptidergic neurosecretory cells of diapause- and nondiapause-destined individuals of the cotton bollworm, Helicoverpa armigera. General Comparative Endocrinol 141: 48–57

    CAS  Google Scholar 

  • Suzuki A, Matsumoto S, Ogura N, Isogai A, Tamura S (1976) Extraction and partial purification of the hormone inducing cuticular melanization in armyworm larvae. Agric Biol Chem 40: 2307–2309

    CAS  Google Scholar 

  • Vale W, Grant G, Rivier JE, Monahan M, Amoss M, Blackwell R, Borgos R, Guillemin R (1972) Synthetic polypeptide antagonists of hypothalamic luteinizing-hormone releasing factor. Science 176: 933–936

    CAS  PubMed  Google Scholar 

  • Vavrek RJ, Stewart JM, (1985) Competitive antagonists of bradykinin. Peptides 6: 161–164

    CAS  PubMed  Google Scholar 

  • Veelaert D, Schoofs L, Verhaert P, De Loof A (1997) Identification of two novel peptides from the central nervous system of the desert locust, Schistocerca gregaria. Biochem Biophys Res Commun 241: 530–534

    CAS  PubMed  Google Scholar 

  • Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43: 49–63

    CAS  PubMed  Google Scholar 

  • Watanabe K, Hull JJ, Niimi T, Imai K, Matsumoto S, Yaginuma T, Kataoka H (2007) FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol Cellul Endocrinol 273: 51–58

    CAS  Google Scholar 

  • Wei ZJ, Zhang, TY, Sun JS, Xu AY, Xu WH, Denlinger DL (2004) Molecular cloning, developmental expression, and tissue distribution of the gene encoding DH, PBAN and other FXPRL neuropeptides in Samia cynthia ricini. Jo Insect Physiol 50: 1151–1161

    CAS  Google Scholar 

  • Wei ZJ, Hong GY, Jiang ST, Tong ZX, Lu C (2008) Characters and expression of the gene encoding DH, PBAN and other FXPRLamide family neuropeptides in Antheraea pernyi. J Appl Entomol 132: 59–67

    CAS  Google Scholar 

  • Xu WH, Denlinger DL (2003) Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol Biolo 12: 509–516

    CAS  Google Scholar 

  • Xu WH, Denlinger DL (2004) Identification of a cDNA encoding DH, PBAN and other FXPRL neuropeptides from the tobacco hornworm, Manduca sexta, and expression associated with pupal diapause. Peptides 25: 1099–1106

    CAS  PubMed  Google Scholar 

  • Xu WH, Sato Y, Ikeda M, Yamashita O (1995) Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) of the Silkworm, Bombyx-Mori and Its Distribution in Some Insects. Biochim Biophys Acta–Gene Structure and Expression 1261: 83–89

    Google Scholar 

  • Xu WH, Sato Y, Yamashita O (1999) Molecular characterization of the cDNA encoding diapause hormone and pheromone biosynthesis activating neuropeptide in Bombyx mandarina. J Sericultural Sci Japan 68: 373–379

    CAS  Google Scholar 

  • Xu J, Su JY, Shen JL Xu WH (2007) Cloning and expression of the gene encoding the diapause hormone and pheromone biosynthesis activating neuropeptide of the beet armyworm, Spodoptera exigua. DNA Sequence 18: 145–151

    CAS  PubMed  Google Scholar 

  • Yamashita O (1996) Diapause hormone of the silkworm, Bombyx mori: Structure, gene expression and function. J Insect Physiol 42: 669–679

    CAS  Google Scholar 

  • Zdarek J, Nachman RJ, Hayes TK (1998) Structure–activity relationships of insect neuropeptides of the pyrokinin/PBAN family and their selective action on pupariation in fleshfly (Neobelleria bullata) larvae (Diptera: Sarcophagidae). Eur J Entomol 95: 9–16

    CAS  Google Scholar 

  • Zeltser I, Gilon C, Ben-Aziz O, Schefler I, Altstein M (2000) Discovery of a linear lead antagonist to the insect pheromone biosynthesis activating neuropeptide (PBAN). Peptides 21: 1457–1465

    CAS  PubMed  Google Scholar 

  • Zeltser I, Ben-Aziz O, Schefler I, Bhargava K, Altstein M, Gilon C (2001) Insect neuropeptide antagonist. Part II. Synthesis and biological activity of backbone cyclic and precyclic PBAN antagonists. J Peptide Res 58: 275–284

    CAS  Google Scholar 

  • Zhang TY, Kang L, Zhang ZF, Xu WH (2004a) Identification of a POU factor involved[A4] in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem J 380: 255–263

    CAS  PubMed  Google Scholar 

  • Zhang TY, Sun JS, Zhang QR, Xu J, Jiang RJ, Xu WH (2004b) The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. J Insect Physiol 50: 547–554

    CAS  PubMed  Google Scholar 

  • Zhang TY, Sun JS, Zhang LB, Shen JL, Xu WH (2004c) Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J Insect Physiol 50: 25–33

    CAS  PubMed  Google Scholar 

  • Zhang TY, Sun JS, Liu WY, Kang L, Shen JL, Xu WH (2005) Structural characterization and transcriptional regulation of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide in the cotton bollworm, Helicoverpa armigera. Biochim Biophys Acta 1728: 44–52

    CAS  PubMed  Google Scholar 

  • Zhao JY, Xu WH, Kang L (2004) Functional analysis of the SGNP I in the pupal diapause of the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Regulatory Peptides 118: 25–31

    CAS  PubMed  Google Scholar 

  • Zheng L, Lytle C, Njauw CN, Altstein M, Martins-Green M (2007) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae. Gene 393: 20–30

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by US-Israel Binational Agricultural Research and Development Fund (BARD) (IS-3356-02). We would like to thank Professor Gilon of the Department of Organic Chemistry at the Hebrew University of Jerusalem, Israel for the design of the photo-affinity ligands and all other linear and backbone cyclic peptides Mrs. Orna Ben-Aziz and Mr. Michael Davidovitch for excellent experimental work and insect rearing. This manuscript forms part of the M.Sc. thesis of Aliza Hariton, a student at the Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Altstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Altstein, M., Hariton, A. (2009). Rational Design of Insect Control Agents: The PK/PBAN Family as a Study Case. In: Ishaaya, I., Horowitz, A. (eds) Biorational Control of Arthropod Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2316-2_3

Download citation

Publish with us

Policies and ethics