Skip to main content

Pathogenesis of Antiretroviral Treatment-Associated Metabolic Syndrome

  • Chapter
Cardiovascular Disease in AIDS
  • 458 Accesses

Abstract

Highly active antiretroviral therapy (ART) with protease inhibitors (PIs) and nucleoside analogue inhibitors of viral reverse transcriptase (NRTI) allowed a major reduction in the severity and morbidity of HIV infection; however, these drugs were associated with the occurrence of secondary effects collectively termed “ART-related lipodystrophy or metabolic syndrome.” This syndrome is defined by alterations in body-fat repartition with peripheral fat loss and/or central fat accumulation together with metabolic disorders such as hypertriglyceridemia (hyper-TG), hypercholesterolemia, and insulin resistance sometimes with altered glucose tolerance. This set of abnormalities shows some similarities with those present in the very common metabolic or insulin-resistance syndrome and some of the pathophysiological mechanisms are probably the same. In addition, the ART-related metabolic syndrome probably results from alterations directly related to the treatment and also probably to the ongoing infection in the context of altered immunity and modified cytokine profile, which most likely enhances its severity and could be responsible for its specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grundy S, Cleeman JI, Daniels SR et al (2005) Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  2. Day C (2007) Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res 4:32–38

    Article  PubMed  Google Scholar 

  3. Mondy K, Overton ET, Grubb J et al (2007) Metabolic syndrome in HIV-infected patients from an urban, midwestern US outpatient population. Clin Infect Dis 44:726–734

    Article  PubMed  Google Scholar 

  4. Jacobson DL, Tang AM, Spiegelman D et al (2006) Incidence of metabolic syndrome in a cohort of HIV-infected adults and prevalence relative to the US population (National Health and Nutrition Examination Survey). J Acquir Immune Defic Syndr 43:458–466

    Article  PubMed  Google Scholar 

  5. Bonfanti P, Ricci E, de Socio G et al; CISAI Study Group (2006) Metabolic syndrome: a real threat for HIV-positive patients?: results from the SIMONE study. J Acquir Immune Defic Syndr 42:128–131

    Article  PubMed  Google Scholar 

  6. Estrada V, Martinez-Larrad MT, Gonzalez-Sanchez JL et al (2006) Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism 55:940–945

    Article  CAS  PubMed  Google Scholar 

  7. Samaras K, Wand H, Law M et al (2007) Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reac-tive protein, and hypoadiponectinemia. Diabetes Care 30:113–119

    Article  CAS  PubMed  Google Scholar 

  8. Leow MK, Addy CL, Mantzoros CS (2003) Clinical review 159: Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies. J Clin Endocrinol Metab 88:1961–1976

    Article  CAS  PubMed  Google Scholar 

  9. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  10. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  CAS  PubMed  Google Scholar 

  11. Perseghin G, Petersen K, Shulman GI (2003) Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 27(Suppl 3):S6–11

    Article  CAS  PubMed  Google Scholar 

  12. Fasshauer M, Paschke R (2003) Regulation of adipocytokines and insulin resistance. Diabetologia 46:1594–1603

    Article  CAS  PubMed  Google Scholar 

  13. Mattison RE, Jensen M (2003) The adipocyte as an endocrine cell. Curr Opin Endocrinol Diabetes 10317–10321

    Google Scholar 

  14. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–453

    Article  CAS  PubMed  Google Scholar 

  15. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33

    Article  CAS  PubMed  Google Scholar 

  16. Yamauchi T, Nio Y, Maki T et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339

    Article  CAS  PubMed  Google Scholar 

  17. Ouchi N, Kihara S, Funahashi T et al (2003) Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 14:561–566

    Article  CAS  PubMed  Google Scholar 

  18. Ruan H, Lodish HF (2003) Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 14:447–455

    Article  CAS  PubMed  Google Scholar 

  19. Lagathu C, Bastard JP, Auclair M et al (2003) Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 311:372–379

    Article  CAS  PubMed  Google Scholar 

  20. Montague CT, O’Rahilly S (2000) The perils of portliness: causes and consequences of visceral adiposity. Diabetes 49:883–888

    Article  CAS  PubMed  Google Scholar 

  21. Lafontan M, Berlan M (2003) Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 24:276–283

    Article  CAS  PubMed  Google Scholar 

  22. Stulnig TM, Waldhausl W (2004) 11beta-hydroxysteroid dehydrogenase type 1 in obesity and type 2 diabetes. Diabetologia 47:1–11

    Article  CAS  PubMed  Google Scholar 

  23. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    Article  CAS  PubMed  Google Scholar 

  24. Gan SK, Kriketos AD, Poynten AM et al (2003) Insulin action, regional fat, and myocyte lipid: altered relationships with increased adiposity. Obes Res 11:1295–1305

    Article  CAS  PubMed  Google Scholar 

  25. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287

    Article  CAS  PubMed  Google Scholar 

  26. Wellen KE, Hotamisligil GS (2003) Obesityinduced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788

    CAS  PubMed  Google Scholar 

  27. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    CAS  PubMed  Google Scholar 

  28. Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    CAS  PubMed  Google Scholar 

  29. Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55:1554–1561

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24:278–301

    Article  CAS  PubMed  Google Scholar 

  31. Moyle G (2007) Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr 45(Suppl 1):S19–26

    CAS  PubMed  Google Scholar 

  32. Perret B, Ferrand C, Bonnet E et al (2003) Lipoprotein metabolism in HIV-positive patients. Eur J Med Res 8(Suppl II):6

    Google Scholar 

  33. Grinspoon SK (2005) Metabolic syndrome and cardiovascular disease in patients with human immunodeficiency virus. Am J Med 118(Suppl 2):23S–28S

    PubMed  Google Scholar 

  34. Savès M, Raffi F, Capeau J et al (2002) Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis 34:1396–1405

    Article  PubMed  Google Scholar 

  35. Noor MA, Flint OP, Maa J et al (2006) Effects of atazanavir/ritonavir and lopinavir/ritonavir on glucose uptake on insulin sensitivity: demonstrable differences in vitro and clinically. AIDS 20:1813–1821

    Article  CAS  PubMed  Google Scholar 

  36. Van der Valk M, Kastelein JJ, Murphy RL et al (2001) Nevirapine-containing antiretroviral therapy in HIV-1 infected patients results in an antiatherogenic lipid profile. AIDS 15:2407–2414

    Article  PubMed  Google Scholar 

  37. Carr A, Samaras K, Thorisdottir A et al (1999) Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 353:2093–2099

    Article  CAS  PubMed  Google Scholar 

  38. Liang JS, Distler O, Cooper DA et al (2001) HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med 7:1327–1331

    Article  CAS  PubMed  Google Scholar 

  39. Lenhard JM, Croom DK et al (2000) HIV protease inhibitors stimulate hepatic triglyceride synthesis. Arterioscler Thromb Vasc Biol 20:2625–2629

    CAS  PubMed  Google Scholar 

  40. Riddle TM, Kuhel DG, Woollett LA et al (2001) HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose tissues due to the accumulation of activated sterol regulatory element-binding proteins in the nucleus. J Biol Chem 276:37514–37519

    Article  CAS  PubMed  Google Scholar 

  41. Bonnet E, Ruidavets JB, Tuech J et al (2001) Apoprotein c-III and E-containing lipoparticles are markedly increased in HIV-infected patients treated with protease inhibitors: association with the development of lipodystrophy. J Clin Endocrinol Metab 86:296–302

    Article  CAS  PubMed  Google Scholar 

  42. Lihn AS, Richelsen B, Pedersen SB et al (2003) Increased expression of TNF-alpha, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am J Physiol Endocrinol Metab 285:E1072–1080

    CAS  PubMed  Google Scholar 

  43. Vigouroux C, Maachi M, Nguyen TH et al (2003) Serum adipocytokines are related to lipodystrophy and metabolic disorders in HIV-infected men under antiretroviral therapy. AIDS 17:1503–1511

    Article  CAS  PubMed  Google Scholar 

  44. Bastard JP, Pereira E, Reynes J et al (2007) Follow-up of lipodystrophy and metabolic alterations in the ANRS APROCO-COPILOTE studying HIV-infected patients initiated with protease inhibitors in 1997 and 1998: relation to adiponectin, leptin and triglycerides levels and to TNF polymorphisms. Antivir Ther L30, P–16 (abstract)

    Google Scholar 

  45. Ledergerber B, Furrer H, Rickenbach M et al (2007) Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV Cohort Study. Clin Infect Dis 45:111–119

    Article  PubMed  Google Scholar 

  46. Brown TT, Cole SR, Li X et al (2005) Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med 1651179–1651184

    Google Scholar 

  47. Florescu D, Kotler DP (2007) Insulin resistance, glucose intolerance and diabetes mellitus in HIV-infected patients. Antivir Ther 12:149–162

    CAS  PubMed  Google Scholar 

  48. Noor MA, Lo JC, Mulligan K et al (2001) Metabolic effects of indinavir in healthy HIV seronegative men. AIDS 15:F11–18

    Article  CAS  PubMed  Google Scholar 

  49. Noor MA, Seneviratne T, Aweeka FT et al (2002) Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS 29:F1–8

    Article  Google Scholar 

  50. Bacchetti P, Gripshover B, Grunfeld C et al (2005) Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr 40:121–131

    Article  PubMed  Google Scholar 

  51. Martin A, Smith DE, Carr A et al (2004) Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS 18:1029–1036

    Article  CAS  PubMed  Google Scholar 

  52. Jemsek JG, Arathoon E, Arlotti M et al (2006) Body fat and other metabolic effects of atazanavir and efavirenz, each administered in combination with zidovudine plus lamivudine, in antiretroviral-naive HIV-infected patients. Clin Infect Dis 42:273–280

    Article  CAS  PubMed  Google Scholar 

  53. Johnson M, Grinsztejn B, Rodriguez C et al (2006) 96-week comparison of once-daily atazanavir/ritonavir and twice-daily lopinavir/ritonavir in patients with multiple virologic failures. AIDS 20:711–718

    Article  CAS  PubMed  Google Scholar 

  54. Fisac C, Fumero E, Crespo M et al (2005) Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS 19:917–925

    Article  CAS  PubMed  Google Scholar 

  55. McComsey GA, Paulsen DM, Lonergan JT et al (2005) Improvements in lipoatrophy, mitochondrial DNA levels and fat apoptosis after replacing stavudine with abacavir or zidovudine. AIDS 19:15–23

    Article  CAS  PubMed  Google Scholar 

  56. Moyle GJ, Sabin CA, Cartledge J et al (2006) A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS 20:2043–2050

    Article  CAS  PubMed  Google Scholar 

  57. Cherry CL, Lal L, Thompson KA et al (2005) Increased adipocyte apoptosis in lipoatrophy improves within 48 weeks of switching patient therapy from Stavudine to abacavir or zidovudine. J Acquir Immune Defic Syndr 38:263–267

    CAS  PubMed  Google Scholar 

  58. Mallal SA, John M, Moore CB et al (2000) Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS 14:1309–1316

    Article  CAS  PubMed  Google Scholar 

  59. Miller J, Carr A, Emery S et al (2003) HIV lipodystrophy: prevalence, severity and correlates of risk in Australia. HIV Med 4:293–301

    Article  CAS  PubMed  Google Scholar 

  60. Gougeon M-L, Péenicaud L, Fromenty B et al (2004) Adipocytes targets and actors in the pathogenesis of HIV-associated lipodystrophy and metabolic alterations. Antivir Ther 9:161–177

    CAS  PubMed  Google Scholar 

  61. Caron M, Auclair M, Vigouroux C et al (2001) The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 intranuclear localization, inhibits preadi-pocyte differentiation, and induces insulin resistance. Diabetes 50:1378–1388

    Article  CAS  PubMed  Google Scholar 

  62. Caron M, Auclair M, Sterlingot H et al (2003) Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS 17:2437–2444

    Article  CAS  PubMed  Google Scholar 

  63. Caron M, Auclair M, Donadille B et al (2007) Human lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor therapy are both associated with prelamin A accumulation, oxidative stress and premature cellular senescence. Cell Death Differ (in press)

    Google Scholar 

  64. Krimm I, Ostlund C, Gilquin B et al (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure (Camb) 10:811–823

    Article  CAS  Google Scholar 

  65. Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777

    Article  CAS  PubMed  Google Scholar 

  66. Vigouroux C, Auclair M, Dubosclard E et al (2001) Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J Cell Sci 114:4459–4468

    CAS  PubMed  Google Scholar 

  67. Jones SP, Janneh O, Back DJ et al (2005) Altered adipokine response in murine 3T3-F442A adipocytes treated with protease inhibitors and nucleoside reverse transcriptase inhibitors. Antivir Ther 10:207–213

    CAS  PubMed  Google Scholar 

  68. Lagathu C, Bastard JP, Auclair M et al (2004) Antiretroviral drugs with adverse effects on adipocyte lipid metabolism and survival alter the expression and secretion of proinflammatory cytokines and adiponectin in vitro. Antivir Ther 9:911–920

    PubMed  Google Scholar 

  69. Lagathu C, Eustace B, Prot M et al (2007) Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir Ther 12:489–500

    CAS  PubMed  Google Scholar 

  70. Caron M, Auclair M, Lagathu C et al (2004) The HIV-1 nucleoside reverse transcriptase inhibitors stavudine and zidovudine alter adipocyte functions in vitro. AIDS 18:2127–2136

    Article  CAS  PubMed  Google Scholar 

  71. Bastard JP, Caron M, Vidal H et al (2002) Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 359:1026–1031

    Article  CAS  PubMed  Google Scholar 

  72. Domingo P, Matias-Guiu X, Pujol RM et al (1999) Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. AIDS 13:2261–2267

    Article  CAS  PubMed  Google Scholar 

  73. Nolan D, Hammond E, Martin A et al (2003) Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS 17:1329–1338

    Article  CAS  PubMed  Google Scholar 

  74. Lloreta J, Domingo P, Pujol RM et al (2002) Ultrastructural features of highly active antiretroviral therapy-associated partial lipodystrophy. Virchows Arch 441:599–604

    Article  PubMed  Google Scholar 

  75. Jan V, Cervera P, Maachi M et al (2004) Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther 9:555–564

    CAS  PubMed  Google Scholar 

  76. Sutinen J, Korsheninnikova E, Funahashi T et al (2003) Circulating concentration of adiponectin and its expression in subcutaneous adipose tissue in patients with highly active antiretroviral therapy-associated lipodystrophy. J Clin Endocrinol Metab 88:1907–1910

    Article  CAS  PubMed  Google Scholar 

  77. Domingo P, Matias-Guiu X, Pujol RM et al (2001) Switching to nevirapine decreases insulin levels but does not improve subcutaneous adipocyte apoptosis in patients with highly active antiretroviral therapy-associated lipodystrophy. J Infect Dis 184:1197–1201

    Article  CAS  PubMed  Google Scholar 

  78. Kim M et al (2007) A six-month interruption of antiretroviral therapy improves adipose tissue function in HIV-infected patients: the ANRS EP29 Lipostrop Study. Antivir Ther 12:1273–1283

    CAS  PubMed  Google Scholar 

  79. Ledru E, Christeff N, Patey O et al (2000) Alteration of tumor necrosis factor-alpha T-cell homeostasis following potent antiretroviral therapy: contribution to the development of human immunodeficiency virus-associated lipodystrophy syndrome. Blood 95:3191–3198

    CAS  PubMed  Google Scholar 

  80. Rietschel P, Hadigan C, Corcoran C et al (2001) Assessment of growth hormone dynamics in human immunodeficiency virus-related lipodystrophy. J Clin Endocrinol Metab 86:504–510

    Article  CAS  PubMed  Google Scholar 

  81. Lo JC, Mulligan K, Noor MA et al (2001) The effects of recombinant human growth hormone on body composition and glucose metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab 86:3480–3487

    Article  CAS  PubMed  Google Scholar 

  82. Luzi L, Meneghini E, Oggionni S et al (2005) GH treatment reduces trunkal adiposity in HIV-infected patients with lipodystrophy: a randomized placebo-controlled study. Eur J Endocrinol 153:781–789

    Article  CAS  PubMed  Google Scholar 

  83. Friis-MØller N, Reiss P, Sabin CA et al; DAD Study Group (2007) Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med 356:1723–1735

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Capeau, J., Caron, M., Boccara, F. (2009). Pathogenesis of Antiretroviral Treatment-Associated Metabolic Syndrome. In: Barbaro, G., Boccara, F. (eds) Cardiovascular Disease in AIDS. Springer, Milano. https://doi.org/10.1007/978-88-470-0761-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0761-1_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0760-4

  • Online ISBN: 978-88-470-0761-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics