Skip to main content

Abstract

In 1919, glucose intolerance became the earliest recognised metabolic abnormality in cancer patients. Prior to the development of severe malnutrition, patients with colon, gastric, sarcoma, endometrial, prostate, localised head, neck and lung cancer had many of the metabolic abnormalities of type II (non-insulin-dependent) diabetes mellitus. These metabolic abnormalities included glucose intolerance, an increase in both hepatic glucose production (HGP) and glucose recycling, and insulin resistance. In a study of over 600 cancer patients, a diabetic pattern of glucose tolerance test was noted in over one-third of the patients [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tayek JA (1992) A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr 11:445–456

    PubMed  CAS  Google Scholar 

  2. Mantovani G, Macciò A, Lai P et al (1998) Cytokine activity in cancer-related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate. Semin Oncol 25(Suppl 6):45–52

    PubMed  CAS  Google Scholar 

  3. Mantovani G, Macciò A, Massa E, Madeddu C (2001) Managing cancer-related anorexia/cachexia. Drugs 61:499–514

    Article  PubMed  CAS  Google Scholar 

  4. Kotler DP (2000) Cachexia. Ann Intern Med 133:622–634

    PubMed  CAS  Google Scholar 

  5. Glicksman AS, Rawson RW (1956) Diabetes and altered carbohydrate metabolism in patients with cancer. Cancer 9:1127–1134

    Article  PubMed  CAS  Google Scholar 

  6. Werk EE Jr, Macgee J, Sholiton IJ (1964) Altered cortisol metabolism in advanced cancer and other terminal illnesses: excretion of 6-hydroxycortisol. Metabolism 13:1425–1438

    Article  PubMed  CAS  Google Scholar 

  7. Lundholm K, Holm G, Schersten T (1978) Insulin resistance in patients with cancer. Cancer Res 38:4665–4670

    PubMed  CAS  Google Scholar 

  8. Argiles JM, Lopez-Soriano FJ (1999) The role of cytokines in cancer cachexia. Med Res Rev 19:223–248

    Article  PubMed  CAS  Google Scholar 

  9. Van der Poll T, Romijn JA, Endert E et al (1991) Tumor necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol 261:E457–E465

    PubMed  Google Scholar 

  10. Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684

    PubMed  CAS  Google Scholar 

  11. Gelin J, Moldawer LL, Lonnroth C et al (1991) Role of endogenous tumor necrosis factor alpha and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res 51:415–421

    PubMed  CAS  Google Scholar 

  12. Noguchi Y, Yoshikawa T, Matsumoto A et al (1996) Are cytokines possible mediators of cancer cachexia? Surg Today 26:467–475

    Article  PubMed  CAS  Google Scholar 

  13. Matthys P, Billiau A (1997) Cytokines and cachexia. Nutrition 13:763–770

    Article  PubMed  CAS  Google Scholar 

  14. Laviano A, Russo M, Freda F, Rossi Fanelli F (2002) Neurochemical mechanisms for cancer anorexia. Nutrition 18:100–105

    Article  PubMed  CAS  Google Scholar 

  15. Plata-Salaman CR (1998) Cytokine-induced anorexia. Behavioral, cellular, and molecular mechanisms. Ann NY Acad Sci 856:160–170

    Article  PubMed  CAS  Google Scholar 

  16. Sonti G, Ilyin SE, Plata-Salaman CR (1996) Anorexia induced by cytokine interactions at pathophysiological concentrations. Am J Physiol 270:R1394–R1402

    PubMed  CAS  Google Scholar 

  17. Morley JE, Silver AJ, Miller DK, Rubenstein LZ (1989) The anorexia of the elderly. Ann NY Acad Sci 575:50–58

    Article  PubMed  CAS  Google Scholar 

  18. Jennische E, Skottner A, Hansson HA (1987) Satellite cells express the trophic factor IGF-1 in regenerating skeletal muscle. Acta Physiol Scand 129:9–15

    Article  PubMed  CAS  Google Scholar 

  19. Poggi C, Le Marchand-Brustel Y, Zapf J et al (1979) Effects and binding of insulin-like growth factor I in the isolated soleus muscle of lean and obese mice: comparison with insulin. Endocrinology 105:723–730

    Article  PubMed  CAS  Google Scholar 

  20. Yu KT, Czech MP (1984) The type I insulin-like growth factor receptor mediates the rapid effects of multiplication-stimulating activity on membrane transport systems in rat soleus muscle. J Biol Chem 259:3090–3095

    PubMed  CAS  Google Scholar 

  21. Beguinot F, Kahn CR, Moses AC, Smith RJ (1985) Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J Biol Chem 260:15892–15898

    PubMed  CAS  Google Scholar 

  22. Ng EH, Rock CS, Lazarus DD et al (1992) Insulinlike growth factor I preserves host lean tissue mass in cancer cachexia. Am J Physiol 262:R426–R431

    PubMed  CAS  Google Scholar 

  23. Barbosa J, Bach FH (1987) Cell-mediated autoimmunity in type I diabetes. Diabetes Metab Rev 3:981–1004

    PubMed  CAS  Google Scholar 

  24. Argiles JM, Lopez-Soriano J, Busquets S, Lopez-Soriano FJ (1997) Journey from cachexia to obesity by TNF. FASEBJ 11:743–751

    CAS  Google Scholar 

  25. Sethi JK, Hotamisligil GS (1999) The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 10:19–29

    Article  PubMed  CAS  Google Scholar 

  26. Hauner H, Petruschke T, Russ Met al (1995) Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia 38:764–771

    Article  PubMed  CAS  Google Scholar 

  27. Kern PA, Ranganathan S, Li C et al (2002) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751

    Google Scholar 

  28. Memon RA, Feingold KR, Moser AH et al (1998) Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am J Physiol 274:E210–E217

    PubMed  CAS  Google Scholar 

  29. Memon RA, Fuller J, Moser AH et al (1998) In vivo regulation of acyl-CoA synthetase mRNA and activity by endotoxin and cytokines. Am J Physiol 275:E64–E72

    PubMed  CAS  Google Scholar 

  30. Hotamisligil GS, Arner P, Caro JF et al (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    PubMed  CAS  Google Scholar 

  31. Moller DE (2000) Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 11:212–217

    Article  PubMed  CAS  Google Scholar 

  32. Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684

    PubMed  CAS  Google Scholar 

  33. Navarra P, Pozzoli G, Brunetti L et al (1992) Interleukin-1 beta and interleukin-6 specifically increase the release of prostaglandin E2 from rat hypothalamic expiants in vitro. Neuroendocrinology 56:61–68

    PubMed  CAS  Google Scholar 

  34. Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 69:584–596

    PubMed  CAS  Google Scholar 

  35. Hukshorn CJ, Saris WH (2004) Leptin and energy expenditure. Curr Opin Clin Nutr Metab Care 7:629–633

    Article  PubMed  CAS  Google Scholar 

  36. Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332:621–628

    Article  PubMed  CAS  Google Scholar 

  37. Bornstein SR, Licinio J, Tauchnitz R et al (1998) Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm, in cortisol and leptin secretion. J Clin Endocrinol Metab 83:280–283

    Article  PubMed  CAS  Google Scholar 

  38. Zumbach MS, Boehme MW, Wahl P et al (1997) Tumor necrosis factor increases serum leptin levels in humans. J Clin Endocrinol Metab 82:4080–4082

    Article  PubMed  CAS  Google Scholar 

  39. Mantovani G, Macciò A, Mura L et al (2000) Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J Mol Med 78:554–561

    Article  PubMed  CAS  Google Scholar 

  40. Mantovani G, Macciò A, Madeddu C et al (2001) Serum values of proinflammatory cytokines are inversely correlated with serum leptin levels in patients with advanced stage cancer at different sites. J Mol Med 79:406–414

    Article  PubMed  CAS  Google Scholar 

  41. Aleman MR, Santolaria F, Batista N et al (2002) Leptin role in advanced lung cancer. A mediator of the acute phase response or a marker of the status of nutrition? Cytokine 19:21–26

    Article  PubMed  CAS  Google Scholar 

  42. Simons JP, Schols AM, Campfield LA et al (1997) Plasma concentration of total leptin and human lung-cancer-associated cachexia. Clin Sci (Lond) 93:273–277

    CAS  Google Scholar 

  43. Rosenbaum M, Nicolson M, Hirsch J et al (1997) Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab 82:3647–3654

    Article  PubMed  CAS  Google Scholar 

  44. Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  45. Pi-Sunyer FX (2000) Overnutrition and undernutrition as modifiers of metabolic processes in disease states. Am J Clin Nutr 72:533S–537S

    PubMed  CAS  Google Scholar 

  46. Havel PJ (2001) Peripheral signals conveying metabolic information to the brain: short-term and longterm regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 226:963–977

    CAS  Google Scholar 

  47. Havel PJ (2004) Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:S1443–S1451

    Article  Google Scholar 

  48. Keim NL, Stern JS, Havel PJ (1998) Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women. Am J Clin Nutr 68:794–801

    PubMed  CAS  Google Scholar 

  49. Dubuc GR, Phinney SD, Stern JS, Havel PJ (1998) Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women. Metabolism 47:429–434

    Article  PubMed  CAS  Google Scholar 

  50. Mantovani G, Macciò A, Madeddu C et al (2002) Quantitative evaluation of oxidative stress, chronic inflammatory indices and leptin in cancer patients: correlation with stage and performance status. Int J Cancer 98:84–91

    Article  PubMed  CAS  Google Scholar 

  51. Mueller WM, Stanhope KL, Gregoire F et al (2000) Effects of metformin and vanadium on leptin secretion from cultured rat adipocytes. Obes Res 8:530–539

    Article  PubMed  CAS  Google Scholar 

  52. Salvemini F, Franze A, Iervolino A et al (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem 274:2750–2757

    Article  PubMed  CAS  Google Scholar 

  53. Mantovani G, Madeddu C, Macciö A et al (2004) Cancer-related anorexia/cachexia syndrome and oxidative stress: an innovative approach beyond current treatment. Cancer Epidemiol Biomarkers Prev 13:1651–1659

    PubMed  CAS  Google Scholar 

  54. Mantovani G, Macciò A, Madeddu C et al (2003) The impact of different antioxidant agents alone or in combination on reactive oxygen species, antioxidant enzymes and cytokines in a series of advanced cancer patients at different sites: correlation with disease progression. Free Radie Res 37:213–223

    Article  CAS  Google Scholar 

  55. Mantovani G, Macciò A, Melis G et al (2000) Restoration of functional defects in peripheral blood mononuclear cells isolated from cancer patients by thiol antioxidants alpha-lipoic acid and N-acetyl cysteine. Int J Cancer 86:842–847

    Article  PubMed  CAS  Google Scholar 

  56. Malmberg KJ, Lenkei R, Petersson M et al (2002) A short-term dietary supplementation of high doses of vitamin E increases T helper 1 cytokine production in patients with advanced colorectal cancer. Clin Cancer Res 8:1772–1778

    PubMed  CAS  Google Scholar 

  57. Cemerski S, Cantagrel A, Van Meerwijk JP, Romagnoli P (2002) Reactive oxygen species differentially affect T cell receptor-signaling pathways. J Biol Chem 277:19585–19593

    Article  PubMed  CAS  Google Scholar 

  58. Mantovani G, Macciò A, Madeddu C et al (2003) Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med 81:664–673

    Article  PubMed  CAS  Google Scholar 

  59. Palacio A, Lopez M, Perez-Bravo F et al (2002) Leptin levels are associated with immune response in malnourished infants. J Clin Endocrinol Metab 87:3040–3046

    Article  PubMed  CAS  Google Scholar 

  60. Faggioni R, Feingold KR, Grunfeld C (2001) Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 15:2565–2571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this chapter

Cite this chapter

Macciò, A., Madeddu, C., Mantovani, G. (2006). Glucose Metabolism. In: Mantovani, G., et al. Cachexia and Wasting: A Modern Approach. Springer, Milano. https://doi.org/10.1007/978-88-470-0552-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0552-5_20

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0471-9

  • Online ISBN: 978-88-470-0552-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics