Skip to main content

Engineering of Plants for the Production of Commercially Important Products: Approaches and Accomplishments

  • Chapter
Plant Biology and Biotechnology

Abstract

For centuries humans have used plants as a source of food, fiber, fuel, and medicine because they have the ability to synthesize a vast array of complex organic compounds using light, carbon dioxide, and water. Advances in recombinant DNA and transgenic technologies during the last several decades have opened many new avenues to further exploit plants for production of many novel products. The potential to use plants to synthesize diverse native and nonnative industrial and pharmaceutical products coupled with the depletion of fossil fuels that are the source of many commercially important products and the adverse effects of chemical synthesis of platform chemicals on the environment have renewed considerable interest in using plants for large-scale production of chemicals and value-added compounds. To accomplish this, different genetic engineering and transformation strategies have been developed for introducing multiple genes (gene stacking), modulating their expression with regulatable promoters, and targeting the products to a specific compartment in the cells. Successful metabolic engineering of plants should lead to sustained production of platform chemicals, pharmaceuticals, and biopolymers. In this chapter, we present an overview of different methods that are currently used to introduce and manipulate expression of one or more genes into plants and discuss some of the recent achievements in producing value-added products and pharmaceuticals in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Day I, Heuberger AL et al (2013) Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. Metab Eng 20:109–120

    CAS  PubMed  Google Scholar 

  • Ali GS, Prasad KV, Hanumappa M et al (2008) Analyses of in vivo interaction and mobility of two spliceosomal proteins using FRAP and BiFC. PLoS One 3:e1953

    PubMed Central  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A et al (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anami S, Njuguna E, Coussens G et al (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrianov V, Borisjuk N, Pogrebnyak N et al (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287

    CAS  PubMed  Google Scholar 

  • Aoyama T, Dong CH, Wu Y et al (1995) Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7:1773–1785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aung MS, Masuda H, Kobayashi T et al (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158

    PubMed Central  PubMed  Google Scholar 

  • Bae K, Choi J, Jang Y et al (2009) Innovative vaccine production technologies: the evolution and value of vaccine production technologies. Arch Pharm Res 32:465–480

    CAS  PubMed  Google Scholar 

  • Bakhsh A, Rao A, Shamim Z et al (2011) A mini review: rubisco small subunit as a strong, green tissue-specific promoter. Arch Biol Sci Belgrade 63:299–307

    Google Scholar 

  • Baud S, Guyon V, Kronenberger J et al (2003) Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J 33:75–86

    CAS  PubMed  Google Scholar 

  • Benchabane M, Goulet C, Rivard D et al (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    CAS  PubMed  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    CAS  PubMed  Google Scholar 

  • Bird C, Ray J (1991) Manipulation of plant gene expression by antisense RNA. In: Biotechnology and genetic engineering review, vol 9. Taylor & Francis, Andover, pp 207–227

    Google Scholar 

  • Block MD, Schell J, Montagu MV (1985) Chloroplast transformation by Agrobacterium tumefaciens. EMBO J 4:1367–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    CAS  PubMed  Google Scholar 

  • Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31

    CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    CAS  PubMed  Google Scholar 

  • Bohmert K, Balbo I, Kopka J et al (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4 % of their fresh weight. Planta 211:841–845

    CAS  PubMed  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S et al (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155:1690–1708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borghi L (2010) Inducible gene expression systems for plants. In: Hennig L. Kohler C (eds) Plant developmental biology, methods in molecular biology, vol 655. Springer Science+Business Media, LLC, pp 65–75

    Google Scholar 

  • Bornke F, Broer I (2010) Tailoring plant metabolism for the production of novel polymers and platform chemicals. Curr Opin Plant Biol 13:354–362

    PubMed  Google Scholar 

  • Bortesi L, Rademacher T, Schiermeyer A et al (2012) Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells. BMC Biotechnol 12:40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boruc J, Van den Daele H, Hollunder J et al (2010) Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network. Plant Cell 22:1264–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byzova M, Verduyn C, De Brouwer D et al (2004) Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner. Planta 218:379–387

    CAS  PubMed  Google Scholar 

  • Cai M, Wei J, Li X et al (2007) A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnol J 5:664–674

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Coussens G, Aesaert S, Verelst W et al (2012) Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. J Exp Bot 63:4263–4273

    CAS  PubMed  Google Scholar 

  • Cui Y, Barampuram S, Stacey MG et al (2013) Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol 161:36–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Gen 5:42–50

    CAS  Google Scholar 

  • Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniell H, Chebolu S, Kumar S et al (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Oliva N et al (2003) Bioengineered ‘golden’ indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    CAS  PubMed  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M et al (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

    PubMed Central  PubMed  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Google Scholar 

  • DellaPenna D (2007) Biofortification of plant-based food: enhancing folate levels by metabolic engineering. Proc Natl Acad Sci U S A 104:3675–3676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

    CAS  PubMed  Google Scholar 

  • Duangpan S, Zhang W, Wu Y et al (2013) Insertional mutagenesis using Tnt1 retrotransposon in potato. Plant Physiol 163:21–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E et al (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392

    CAS  Google Scholar 

  • Elbahloul Y, Frey K, Sanders J et al (2005) Protamylasse, a residual compound of industrial starch production, provides a suitable medium for large-scale cyanophycin production. Appl Environ Microbiol 71:7759–7767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    CAS  PubMed  Google Scholar 

  • FDA (2002) Draft guidance for industry. Drugs, biologics, and medical devices. Derived from bioengineered plants for use in humans and animals. FDA, Rockville

    Google Scholar 

  • Fischer R, Twyman RM, Schillberg S (2003) Production of antibodies in plants and their use for global health. Vaccine 21:820–825

    CAS  PubMed  Google Scholar 

  • Fitzpatrick TB, Basset GJ, Borel P et al (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 16:315–332

    CAS  PubMed  Google Scholar 

  • Frey AD, Rimann M, Bailey JE et al (2001) Novel pristinamycin-responsive expression systems for plant cells. Biotechnol Bioeng 74:154–163

    CAS  PubMed  Google Scholar 

  • Gao C, Nielsen KK (2013) Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun. In: Reske-Kunz SSaAB (ed) Biolistic DNA delivery: methods and protocols, methods in molecular biology, vol 940. Springer Science + Business Media, pp 1–16

    Google Scholar 

  • Garg AK, Kim JK, Owens TG et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52

    PubMed Central  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP et al (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gleba Y, Giritch A (2011) Plant viral vectors for protein expression. In: Caranta MAC, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Caister Acad. Press, Norfolk, pp 387–412

    Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    CAS  PubMed  Google Scholar 

  • Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97:705–716

    CAS  PubMed  Google Scholar 

  • Golovkin M (2011) Production of recombinant pharmaceuticals using plant biotechnology. In: Liong MT (ed) Bioprocess science and technology. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Gomord V, Sourrouille C, Fitchette AC et al (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2:83–100

    CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron- binding protein ferritin. Theor Appl Genet 100:658–664

    CAS  Google Scholar 

  • Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380

    CAS  PubMed  Google Scholar 

  • Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–107

    CAS  Google Scholar 

  • Gunl M, Liew E, David K et al (2009) Analysis of a post-translational steroid induction system for GIGANTEA in Arabidopsis. BMC Plant Biol 9:141

    PubMed Central  PubMed  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS et al (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 90:1629–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    CAS  PubMed  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    CAS  PubMed  Google Scholar 

  • Hemenway C, Fang RX, Kaniewski WK et al (1988) Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J 7:1273–1280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirochika H (2010) Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breed Sci 60:486–492

    CAS  Google Scholar 

  • Hood EE, Woodard SL, Horn ME (2002) Monoclonal antibody manufacturing in transgenic plants–myths and realities. Curr Opin Biotechnol 13:630–635

    CAS  PubMed  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG et al (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    CAS  PubMed  Google Scholar 

  • Huhns M, Neumann K, Hausmann T et al (2008) Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotechnol J 6:321–336

    PubMed  Google Scholar 

  • Huhns M, Neumann K, Hausmann T et al (2009) Tuber-specific cphA expression to enhance cyanophycin production in potatoes. Plant Biotechnol J 7:883–898

    PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG et al (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    CAS  PubMed  Google Scholar 

  • Joentgen W, Groth T, Steinbuchel A et al (2001) Polyasparginic acid homoplymers and copolymers, biotechnical production and use thereof. In: Vol US patent 6, 180, 752

    Google Scholar 

  • Kang JY, Choi HI, Im MY et al (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    CAS  PubMed  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K et al (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D et al (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirienko DR, Luo A, Sylvester AW (2012) Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study. Plant Physiol 159:1309–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kishor P, Hong Z, Miao GH et al (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A et al (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    CAS  Google Scholar 

  • Koosha F, Muller RH, Davis SS (1989) Polyhydroxybutyrate as a drug carrier. Crit Rev Ther Drug Carrier Syst 6:117–130

    CAS  PubMed  Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347

    PubMed  Google Scholar 

  • Kourtz L, Dillon K, Daughtry S et al (2007) Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Res 16:759–769

    CAS  PubMed  Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ku MSB, Agarie S, Nomura M et al (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotech 17:76–80

    CAS  Google Scholar 

  • Kyozuka J, Olive M, Peacock WJ et al (1994) Promoter elements required for developmental expression of the maize Adh1 gene in transgenic rice. Plant Cell 6:799–810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    CAS  PubMed  Google Scholar 

  • Lee HY, Bowen CH, Popescu GV et al (2011) Arabidopsis RTNLB1 and RTNLB2 reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. Plant Cell 23:3374–3391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM et al (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    CAS  PubMed  Google Scholar 

  • Li JF, Chung HS, Niu Y et al (2013) Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants. Plant Cell 25:1507–1522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lossl A, Eibl C, Harloff HJ et al (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    CAS  PubMed  Google Scholar 

  • Lossl A, Bohmert K, Harloff H et al (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190S

    CAS  PubMed  Google Scholar 

  • Luo D, Coen ES, Doyle S et al (1991) Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus. Plant J 1:59–69

    CAS  PubMed  Google Scholar 

  • Ma JK, Barros E, Bock R et al (2005a) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JK, Chikwamba R, Sparrow P et al (2005b) Plant-derived pharmaceuticals – the road forward. Trends Plant Sci 10:580–585

    CAS  PubMed  Google Scholar 

  • Magee AM, Coyne S, Murphy D et al (2004) T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res 13:325–337

    CAS  PubMed  Google Scholar 

  • Makino A, Shimada T, Takumi S et al (1997) Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense RbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiol 114:483–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maliga P (2001) Plastid engineering bears fruit. Nat Biotechnol 19:826–827

    CAS  PubMed  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    CAS  PubMed  Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28

    CAS  PubMed  Google Scholar 

  • Mangano S, Daniela Gonzalez C, Petruccelli S (2014) Agrobacterium tumefaciens -mediated transient transformation of Arabidopsis thaliana leaves. In: SaJ Salinas JJS (ed) Arabidopsis protocols, methods in molecular biology, vol 1062. Springer Science+Business Media, New York, pp 165–173

    Google Scholar 

  • Mann DG, King ZR, Liu W et al (2011) Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol 11:74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maqbool S, Riazuddin S, Loc N et al (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    CAS  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J et al (1990) Induction of male sterility in plants by chimeaeric ribonuclease gene. Nature 347:737–741

    CAS  Google Scholar 

  • Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7:189–195

    CAS  PubMed  Google Scholar 

  • Masclaux F, Charpenteau M, Takahashi T et al (2004) Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem Biophys Res Commun 321:364–369

    CAS  PubMed  Google Scholar 

  • Matsuhara S, Jingu F, Takahashi T et al (2000) Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J 22:79–86

    CAS  PubMed  Google Scholar 

  • McElroy D, Zhang W, Cao J et al (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS et al (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S et al (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuda N, Hiratsu K, Todaka D et al (2006) Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnol J 4:325–332

    CAS  PubMed  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotech 19:965–969

    CAS  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    CAS  PubMed  Google Scholar 

  • Mor TS, Gomez-Lim MA, Palmer KE (1998) Perspective: edible vaccines–a concept coming of age. Trends Microbiol 6:449–453

    CAS  PubMed  Google Scholar 

  • Muhlbauer SK, Koop HU (2005) External control of transgene expression in tobacco plastids using the bacterial lac repressor. Plant J 43:941–946

    PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  PubMed  Google Scholar 

  • Muthurajan R, Balasubramanian P (2010) Pyramiding genes for enhancing tolerance to abiotic and biotic stresses. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer Science+Business Media, pp 163–183

    Google Scholar 

  • Nakashita H, Arai Y, Shikanai T et al (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    CAS  PubMed  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y et al (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naqvi S, Farre G, Sanahuja G et al (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    CAS  PubMed  Google Scholar 

  • Neumann K, Stephan DP, Ziegler K et al (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3:249–258

    CAS  PubMed  Google Scholar 

  • Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147:939–953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolau BJ, Perera MA, Brachova L et al (2008) Platform biochemicals for a biorenewable chemical industry. Plant J 54:536–545

    CAS  PubMed  Google Scholar 

  • Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998–12999

    CAS  PubMed  Google Scholar 

  • Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    CAS  PubMed  Google Scholar 

  • O’Kennedy MM, Stark HC, Dube N (2011) Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. Methods Mol Biol 710:343–354

    PubMed  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    CAS  PubMed  Google Scholar 

  • Oppermann-Sanio FB, Steinbuchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22

    PubMed  Google Scholar 

  • Oppermann-Sanio FB, Hai T, Aboulmaged E et al (1999) Biochemistry of polyamide metabolism. In: Steinbuchel A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Wiley-VCH, Weinheim, pp 185–193

    Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    CAS  PubMed  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N et al (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Google Scholar 

  • Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321

    CAS  PubMed  Google Scholar 

  • Peterson RK, Arntzen CJ (2004) On risk and plant-based biopharmaceuticals. Trends Biotechnol 22:64–66

    CAS  PubMed  Google Scholar 

  • Peterson AA, Fischer CR (2010) Conversion of natural products including cellulose to hydrocarbons, hydrogen and/or other related compounds. US Patent Application No. 2010/0228067

    Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K et al (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523

    CAS  PubMed  Google Scholar 

  • Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology (N Y) 13:142–150

    CAS  Google Scholar 

  • Popescu SC, Snyder M, Dinesh-Kumar S (2007) Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav 2:416–420

    PubMed Central  PubMed  Google Scholar 

  • Powell PA, Stark DM, Sanders PR et al (1989) Protection against tobacco mosaic virus in transgenic plants that express tobacco mosaic virus antisense RNA. Proc Natl Acad Sci U S A 86:6949–6952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell AL, Nguyen CV, Hill T et al (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715

    CAS  PubMed  Google Scholar 

  • Reed SG, Bertholet S, Coler RN et al (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30:23–32

    CAS  PubMed  Google Scholar 

  • Rhodes MJ (1994) Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant Mol Biol 24:1–20

    CAS  PubMed  Google Scholar 

  • Roslan HA, Salter MG, Wood CD et al (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 28:225–235

    CAS  PubMed  Google Scholar 

  • Ruf S, Bock R (2011) In vivo analysis of RNA editing in plastids. In: Aphasizhev R (ed) RNA and DNA editing, vol 718. Humana Press, New York, pp 137–150

    Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. Plant Physiol 138:1232–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N et al (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rybicki EP (2009) Plant-produced vaccines: promise and reality. Drug Discov Today 14:16–24

    CAS  PubMed  Google Scholar 

  • Sablok G, Perez-Quintero AL, Hassan M et al (2011) Artificial microRNAs (amiRNAs) engineering – On how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophys Res Commun 406:315–319

    CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sallaud C, Gay C, Larmande P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    CAS  PubMed  Google Scholar 

  • Sato T, Aoyagi S, Kibayashi C (2003) Enantioselective total synthesis of (+)-azimine and (+)-carpaine. Org Lett 5:3839–3842

    CAS  PubMed  Google Scholar 

  • Schiermeyer A, Dorfmuller S, Schinkel H (2004) Production of pharmaceutical proteins in plants and plant cell suspension cultures. In: Fischer RS, Schillberg S (eds) Molecular farming: plant-made pharmaceuticals and technical proteins. Wiley, Weinheim, pp 91–109

    Google Scholar 

  • Schmidt R, Schippers JH, Welker A et al (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica. AoB Plants 2012:pls011

    PubMed Central  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott CT (2005) The problem with potency. Nat Biotechnol 23:1037–1039

    CAS  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ et al (1999) Technical advance: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    CAS  PubMed  Google Scholar 

  • Simon RD (1987) Inclusion bodies in the cyanobacteria: cyanophycin. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 199–225

    Google Scholar 

  • Singh ND, Ding Y, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification, or oral delivery and functional evaluation. Methods Mol Biol 483:163–192

    CAS  PubMed  Google Scholar 

  • Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113–119

    CAS  PubMed  Google Scholar 

  • Slater A, Scott N, Fowler M (2003) Plant biotechnology. In: Oxford U (ed) The genetic manipulation of plants. Oxford University Press, Oxford, UK, p 346

    Google Scholar 

  • Sparrow PA, Twyman RM (2009) Biosafety, risk assessment and regulation of plant-made pharmaceuticals. Methods Mol Biol 483:341–353

    PubMed  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G et al (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    CAS  PubMed  Google Scholar 

  • Stockhaus J, Hofer M, Renger G et al (1990) Anti-sense RNA efficiently inhibits formation of the 10 kd polypeptide of photosystem II in transgenic potato plants: analysis of the role of the 10 kd protein. EMBO J 9:3013–3021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoger E, Sack M, Fischer R et al (2002) Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 13:161–166

    CAS  PubMed  Google Scholar 

  • Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157

    CAS  PubMed  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    CAS  PubMed  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S et al (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – a review. Biotechnol Adv 25:148–175

    CAS  PubMed  Google Scholar 

  • Tacket CO, Mason HS, Losonsky G et al (1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med 4:607–609

    CAS  PubMed  Google Scholar 

  • Takaha T, Critchley J, Okada S et al (1998) Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-α-glucanotransferase). Planta 205:445–451

    CAS  Google Scholar 

  • Takahashi J, Rudsander UJ, Hedenström M et al (2009) KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol 50:1099–1115

    CAS  PubMed  Google Scholar 

  • Tang GQ, Luscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11:177–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor LE II, Dai Z, Decker SR et al (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    CAS  PubMed  Google Scholar 

  • Thorneycroft D, Sherson SM, Smith SM (2001) Using gene knockouts to investigate plant metabolism. J Exp Bot 52:1593–1601

    CAS  PubMed  Google Scholar 

  • Tieman D, Bliss P, McIntyre LM et al (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22:1035–1039

    CAS  PubMed  Google Scholar 

  • Tiwari S, Verma PC, Singh PK et al (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuchiya T, Toriyama K, Yoshikawa M et al (1995) Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol 36:487–494

    CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2003) The Agrobacterium-plant cell interaction. Taking biology lessons from a bug. Plant Physiol 133:943–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    CAS  PubMed  Google Scholar 

  • Ulmer JB, Valley U, Rappuoli R (2006) Vaccine manufacturing: challenges and solutions. Nat Biotechnol 24:1377–1383

    CAS  PubMed  Google Scholar 

  • United Nations DoEaSA (2013) The 2012 revision, highlights and advance tables. United Nations, New York

    Google Scholar 

  • United States Department of Agriculture (2008) Biobases products: market potential and projections through 2025. In, pp 1–294

    Google Scholar 

  • Valentine L (2003) Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics. Plant Physiol 133:948–955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701

    PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M et al (1990a) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed Central  PubMed  Google Scholar 

  • van der Krol AR, Mur LA, de Lange P et al (1990b) Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14:457–466

    PubMed  Google Scholar 

  • Van Hoewyk D, Abdel-Ghany SE, Cohu CM et al (2007) Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc Natl Acad Sci U S A 104:5686–5691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vermij P, Waltz E (2006) USDA approves the first plant-based vaccine. Nature 24:233–234

    Google Scholar 

  • von Lintig J, Kreusch D, Schroder J (1994) Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 176:495–503

    Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol Plant Mol Biol 43:49–78

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  PubMed  Google Scholar 

  • Wang HH, Yin WB, Hu ZM (2009) Advances in chloroplast engineering. J Genet Genomics 36:387–398

    CAS  PubMed  Google Scholar 

  • Wani SH, Haider N, Kumar H et al (2010) Plant plastid engineering. Curr Genomics 11:500–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warthmann N, Chen H, Ossowski S et al (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    PubMed Central  PubMed  Google Scholar 

  • Wilkinson JE, Twell D, Lindsey K (1997) Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48:265–275

    CAS  Google Scholar 

  • Wilkinson MJ, Sweet J, Poppy GM (2003) Risk assessment of GM plants: avoiding gridlock? Trends Plant Sci 8:208–212

    CAS  PubMed  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    CAS  PubMed  Google Scholar 

  • Yamada-Onodera K, Norimoto A, Kawada N et al (2007) Production of optically active 1,2,4-butanetriol from corresponding racemate by microbial stereoinversion. J Biosci Bioeng 103:494–496

    CAS  PubMed  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Kloti A et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Yoon JM, Zhao L, Shanks JV (2013) Metabolic engineering with plants for a sustainable biobased economy. Annu Rev Chem Biomol Eng 4:211–237

    CAS  PubMed  Google Scholar 

  • Yoshida K, Kasai T, Garcia MR et al (1995) Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl Microbiol Biotechnol 44:466–472

    CAS  PubMed  Google Scholar 

  • Yusibov V, Rabindran S (2008) Recent progress in the development of plant derived vaccines. Expert Rev Vaccines 7:1173–1183

    PubMed  Google Scholar 

  • Zeevi V, Liang Z, Arieli U et al (2012) Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. Plant Physiol 158:132–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan X, Wu H, Cheung A (1996) Nuclear male sterility induced by pollen-specific expression of a ribonuclease. Sex Plant Reprod 9:35–43

    Google Scholar 

  • Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong L, Whitehouse RS (2005) Methods of making intermediates from polyhydroxyalkanoates. US Patent No. 6,897,338

    Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Metabolic engineering research in our group is supported by a grant from the Office of Naval Research to ASNR. We thank Dr. Irene Day for her comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. N. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Abdel-Ghany, S.E., Golovkin, M., Reddy, A.S.N. (2015). Engineering of Plants for the Production of Commercially Important Products: Approaches and Accomplishments. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_28

Download citation

Publish with us

Policies and ethics