Skip to main content

A Functional View of Plant Microbiomes: Endosymbiotic Systems That Enhance Plant Growth and Survival

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Over the past several decades, it has become clear that numerous nonpathogenic or weakly pathogenic microbes inhabit plants both internally and externally. The challenge for plant biologists who study endophytism lies not only in the discovery of endophytes in plants but also in articulating the precise mechanisms whereby these endophytes function to support the growth and survival of their plant hosts. In this chapter, we discuss the phenomenon of microbial endophytism from a functional perspective. We propose that endophytic microbes in plants comprise a critical part of the plant’s functional systems. We propose three broad categories of endosymbiotic systems, including (1) Defensive Endosymbiotic Systems, (2) Stress Tolerance Endosymbiotic Systems, and (3) Nutritional Endosymbiotic Systems. We will also consider potential interactions between endosymbiotic organisms of plants and relativity of function of endosymbionts. A particular endophyte may serve multiple functions in the ecology of its host plant, and predominant functions of an endophyte may change depending on the ecological circumstances affecting its host. Only now are we beginning to realize how important endophytic microbes are to plants. Much research is needed to elucidate the mechanisms of action and the roles that endophytes play in modulating host plant ecology and enhancing plant growth and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    PubMed  Google Scholar 

  • Ainsworth GC (1981) Introduction to the history of plant pathology. Cambridge University Press, Cambridge, 315pp

    Google Scholar 

  • Álvarez-Loayza P, White JF Jr, Torres MS, Balslev H, Kristiansen T (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS ONE 6(1):e16386. doi:10.1371/journal.pone.0016386

    PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    PubMed  CAS  Google Scholar 

  • Austin DF (1973) The American Erycibeae (Convolvulaceae): Maripa, Dicranostyles, and Lysiostyles. I. Systematics. Ann Missouri Bot Gard 60:306–412

    Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO, de Araujo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:e1–e4, http://www.ejb.org/content/vol3/issue

    Google Scholar 

  • Bacon CW, Hinton DM (2011) In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Can J Microbiol 57:1–8

    Google Scholar 

  • Barazani OZ, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    CAS  Google Scholar 

  • Bashan Y, Singh CS, Levanony H (1989) Contribution of Azospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Can J Bot 67:2429–2434

    CAS  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371

    PubMed  CAS  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P (2003) ‘Candidatus glomeribacter gigasporum’ gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124

    PubMed  CAS  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P (2004) Vertical transmission of endobacteria in arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70(6):3600–3608

    PubMed  CAS  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. American Phytopathological Society Press, St Paul, pp 31–65

    Google Scholar 

  • Bonfante P, Iulia-Andra A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    PubMed  CAS  Google Scholar 

  • Bonos SA, Wilson MM, Meyer WA, Funk CR (2005) Suppression of red thread in fine fescues through endophyte-mediated resistance. Online Appl Turfgrass Sci. doi:10.1094/ATS-2005-0725-01-RS

    Google Scholar 

  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignaca HM, Dinana TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055, www.pnas.org/cgi/doi/10.1073/pnas.1102999108

    PubMed  CAS  Google Scholar 

  • Cheplick GP, Clay K (1988) Acquired chemical defences in grasses: the role of fungal endophytes. Oikos 52:309–318

    Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351

    PubMed  CAS  Google Scholar 

  • Clarke BB, White JF Jr, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte mediated suppression of dollar spot disease in fine fescue. Plant Dis 90:994–998

    Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Google Scholar 

  • Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J Chem Ecol 15:169–182

    CAS  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    PubMed  Google Scholar 

  • Dakora FD, Chimphango SBM, Valentine AJ, Wlmerich C, Newton WE (2008) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. In: Proceedings of the 15th international nitrogen fixation congress and the 12th international conference of the African Association for Biological Nitrogen Fixation, Cape Town, 21–26 Jan 2007. Current plant sciences and biotechnology in agriculture, vol 42. Springer, New York

    Google Scholar 

  • Döbereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Döbereiner J, Baldani VLD, Olivares FL, Reis VM (1994) Endophytic diazotrophs: the key to BNF in gramineous plants. In: Hegasi NA, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. American University in Cairo Press, Cairo, pp 395–408

    Google Scholar 

  • Dugan FM, Sitton J, Sullivan RF, White JF Jr (2002) The Neotyphodium endophyte of wild barley (Hordeum brevisubulatum subsp. violaceum) grows and sporulates on leaf surfaces of the host. Symbiosis 32:147–159

    Google Scholar 

  • Faeth SH, Saikkonen K, Helander M, Sullivan TJ, Rambo JL (1999) Endophytic fungi in native populations of grasses: against conventional wisdom of the anti-herbivore mutualism and the plant diversity hypothesis. Am Zool 39:120A–121A

    Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    PubMed  CAS  Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    PubMed  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    PubMed  CAS  Google Scholar 

  • Hooper LV, Midvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    PubMed  CAS  Google Scholar 

  • Huang W-Y, Cai Y-Z, Xing J, Corke JH, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30

    CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Kellenberger, Grimm B, Fendrik J, Neimann EG (1988) Occurrence of effective nitrogen scavenging bacteria in the rhizosphere of kallar grass. Plant Soil 110:339–348

    CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Kellenberger E, Van Montagu M (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Dobereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    CAS  Google Scholar 

  • Jeffers S (1991) Seasonal incidence of fungi in symptomless cranberry leaves and fruit treated with fungicides during bloom. Phytopathology 81:636–644

    CAS  Google Scholar 

  • Jennings DD, Ehrenshaft M, Pharr DM, Williamson JD (1998) Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci U S A 95:15129–15133

    PubMed  CAS  Google Scholar 

  • Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Inc., Boca Raton, pp 137–166

    Google Scholar 

  • Kuldau G, Bacon CW (2008) Clavicipitaceous endophytes: their ability to enhance grass resistance to multiple stresses. Biol Control 46:57–71

    Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Planta 155:780–790

    CAS  Google Scholar 

  • Latch GCM, Potter LR, Tyler BF (1987) Incidence of endophytes in seeds from collections of Lolium and Festuca species. Ann Appl Biol 111:59–64

    Google Scholar 

  • Leistner E, Steiner U (2009) Fungal origin of ergoline alkaloids present in dicotyledonous plants (Convolvulaceae). In: Anke T, Weber D (eds) Physiology and genetics, The mycota XV. Springer, Berlin, pp 197–208

    Google Scholar 

  • Lewis GC, White JF Jr, Bonnefont J (1993) Evaluation of grasses infected with fungal endophytes against locusts. Ann Appl Biol Test Agrochem Cultiv 14:142–143

    Google Scholar 

  • Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS ONE 6(3):e17693. doi:10.1371/journal.pone.0017693

    PubMed  CAS  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732

    PubMed  CAS  Google Scholar 

  • Magnani G, Didonet C, Cruz L, Picheth C, Pedrosa F, Souza E (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:258

    Google Scholar 

  • Malinowski DP, Belesky DP (2006) Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassland Sci 52:1–14

    Google Scholar 

  • Malinowski M, Belesky DP, Lewis GC (2005) Abiotic stresses in endophytic grasses. In: Roberts C, West C, Spiers D (eds) Neotyphodium in cool season grasses. Blackwell Publishing, Ames, pp 187–199

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    PubMed  CAS  Google Scholar 

  • Markert A, Steffan N, Ploss K, Hellwig S, Steiner U, Drewke C, Li SM, Boland W, Leistner E (2008) Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a clavicipitalean fungus. Plant Physiol 147:296–305

    PubMed  CAS  Google Scholar 

  • Márquez LM, Redman R, Rodríguez R, Roossinck M (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    PubMed  Google Scholar 

  • Matthews J, Clay K (2001) Influence of fungal endophyte infection on plant-soil feedback and community interactions. Ecology 82:500–509

    Google Scholar 

  • Minamisawa C, Nishioka K, Miyaki T, Ye B, Miyamoto T, You M, Saito A, Saito M, Barraquio W, Teaumroong N, Sein T, Sato T (2004) Anaerobic nitrogen-fixing consortia consisting of Clostridia isolated from gramineous plants. Appl Environ Microbiol 70:3096–3102

    PubMed  CAS  Google Scholar 

  • Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino M, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741

    PubMed  CAS  Google Scholar 

  • Minerdi D, Bossi S, Maffei M, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    PubMed  CAS  Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    PubMed  CAS  Google Scholar 

  • Morsy M, Oswald J, He J, Tang Y, Roossinck M (2010) Teasing apart a three-way symbiosis: transcriptome analysis of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Com 401:225–230

    PubMed  CAS  Google Scholar 

  • Moy M, Belanger F, Duncan R, Freehof A, Leary C, Meyer W, Sullivan R, White JF Jr (2000) Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis 28:291–302

    Google Scholar 

  • Novas MV, Ianonne LJ, Godeas AM, Scervino JM (2011) Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis. doi:10.1007/s13199-011-0140-4

    Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Sig Behav 3:263–265

    Google Scholar 

  • Oudemans PV, Caruso FL, Stretch AW (1998) Cranberry fruit rot in the Northeast: a complex disease. Plant Dis 82:1176–1184

    Google Scholar 

  • Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9–17

    PubMed  CAS  Google Scholar 

  • Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4597

    PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzrk S, Webb RI, Sagulenko E, Nasholm T, Schmidt S, Lonhienne TGA (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS ONE 5(7):e11915. doi:10:1371/journal.pone.0011915

    PubMed  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    PubMed  CAS  Google Scholar 

  • Puente ME, Bashan Y (1994) The desert epiphyte Tillandsia recurvata harbours the nitrogen-fixing bacterium Pseudomonas stutzeri. Can J Bot 72:406–408

    Google Scholar 

  • Puente ME, Li C, Bashan Y (2009) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    PubMed  CAS  Google Scholar 

  • Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453

    PubMed  CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581

    PubMed  CAS  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6(7):e14823. doi:10.1371/journal.pone.0014823

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    PubMed  Google Scholar 

  • Richardson MD, Chapman GW, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue. Crop Sci 32:1060–1061

    CAS  Google Scholar 

  • Rodriguez RJ, Freeman DC, McArthur ED, Kim YO, Redman RS (2009a) Symbiotic regulation of plant growth, development and reproduction. Commun Integr Biol 2:141–143

    PubMed  Google Scholar 

  • Rodriguez RJ, Woodward C, Kim YO, Redman RS (2009b) Habitat-adapted symbiosis as a defense against abiotic and biotic stresses. In: White JF Jr, Torres MS (eds) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, pp 335–346

    Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    PubMed  CAS  Google Scholar 

  • Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51

    Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463–471

    PubMed  Google Scholar 

  • Saikkonen K, Helander M, Ranta H, Neuvonen S, Virtanen T, Suomela J, Vuorinen P (1996) Endophyte-mediated interactions between woody plants and insect herbivores? Entomol Exp Appl 80:269–271

    Google Scholar 

  • Saikkonen K, Helander M, Faeth SH, Schulthess F, Wilson D (1999) Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia 121:411–420

    Google Scholar 

  • Saikkonen K, Helander M, Faeth SH (2004) Fungal endophytes: hitchhikers of the green world. In: Gillings M, Holmes A (eds) Plant microbiology. BIOS Scientific Publishers Limited, Oxford, pp 77–95

    Google Scholar 

  • Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2861–2873

    PubMed  CAS  Google Scholar 

  • Schardl CL, Phillips TD (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81:430–438

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    PubMed  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    CAS  Google Scholar 

  • Sloan DB, Moran NA (2012) Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett. doi:10.1098/rsbl.2012.0664

    PubMed  Google Scholar 

  • Spiering MJ, Moon CD, Wilkinson HH, Schardl CL (2005) Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169:1403–1414

    PubMed  CAS  Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in planta endophyte concentration. Ann Bot 98:379–387

    PubMed  Google Scholar 

  • Steiner U, Ahimsa-Müller MA, Markert A, Kucht S, Groß J, Kauf N, Kuzma M, Zych M, Lamshöft M, Furmanowa M, Knoop V, Drewke C, Leistner E (2006) Molecular characterisation of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 224:533–544

    PubMed  CAS  Google Scholar 

  • Stewart WD, Fitzgerald GP, Burris RH (1967) In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A 58:2071–2078

    PubMed  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel-Dekker, New York, pp 3–30

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    PubMed  CAS  Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition. New Phytol 176:673–679

    PubMed  CAS  Google Scholar 

  • Sundram S, Meon S, Seman IA, Othman R (2011) Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. J Microbiol 49:551–557

    PubMed  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    CAS  Google Scholar 

  • Tadych M, Ambrose KV, Bergen MS, Belanger FC, White JF Jr (2012) Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers 5:1–15

    Google Scholar 

  • Taulé C, Mareque C, Barloco C, Hackembruch F, Reis V, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Google Scholar 

  • Taylor TN, Taylor EI (1993) The biology and evolution of fossil plants. Prentice Hall, New York

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87:560–573

    Google Scholar 

  • Torres MS, White JF, Zhang X, Hinton DM, Bacon CW (2012) Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol 5:322–330

    Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehi I, Varma A et al (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact 21:1371–1383

    PubMed  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    PubMed  CAS  Google Scholar 

  • West ER, Cother EJ, Steel CC, Ash GJ (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216

    PubMed  CAS  Google Scholar 

  • White JF Jr (1987) The widespread distribution of endophytes in the Poaceae. Plant Dis 71:340–342

    Google Scholar 

  • White JF Jr (1988) Endophyte-host associations in forage grasses. XI. A proposal concerning origin and evolution. Mycologia 80:442–446

    Google Scholar 

  • White JF Jr, Cole GT (1985) Endophyte-host associations in forage grasses. III. In vitro inhibition of fungi by Acremonium coenophialum. Mycologia 77:487–489

    Google Scholar 

  • White JF, Torres MS (2010) Is endophyte-mediated defensive mutualism oxidative stress protection? Physiol Plant 138:440–446

    PubMed  CAS  Google Scholar 

  • White JF Jr, Morrow AC, Morgan-Jones G, Chambless DA (1991) Endophyte-host associations in forage grasses. XIV. Primary stromata formation and seed transmission in Epichloë typhina: developmental and regulatory aspects. Mycologia 83:72–81

    Google Scholar 

  • White JF Jr, Glenn AE, Chandler KF (1993) Endophyte-host associations in grasses. XVIII. Moisture relations and insect herbivory of the stromal leaf of Epichloë typhina. Mycologia 85:195–202

    Google Scholar 

  • White JF, Martin TI, Cabral D (1996) Endophyte-host associations in grasses. Conidia formation by Acremonium endophytes in the phylloplanes of Agrostis hyemalis and Poa rigidifolia. Mycologia 88:174–178

    Google Scholar 

  • White JF, Sullivan R, Balady G, Gianfagna T, Yue Q, Meyer W, Cabral D (2001) A fungal endosymbiont of the grass Bromus setifolius: distribution in some Andean populations, identification and examination of beneficial properties. Symbiosis 31:241–257

    Google Scholar 

  • White JF Jr, Crawford H, Torres MS, Mattera R, Bergen M, Irisarry I (2012a) A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 57:161–171

    PubMed  CAS  Google Scholar 

  • White JF, Johnson H, Torres MS, Irizarry I (2012b) Nutritional endosymbiotic systems in plants: bacteria function like ‘quasi-organelles’ to convert atmospheric nitrogen into plant nutrients. Plant Pathol Microbiol 3:e104

    Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Elsevier Sciences Ltd./Academic, London

    Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Interact 13:1027–1033

    PubMed  CAS  Google Scholar 

  • Yue Q, Miller CJ, White JF, Richardson MD (2000) Isolation and characterization of fungal inhibitors from Epichloë festucae. J Agric Food Chem 48:4687–4692

    PubMed  CAS  Google Scholar 

  • Zhang YP, Nan ZB (2007) Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J Agron Crop Sci 193:377–386

    CAS  Google Scholar 

  • Zhang G, Peng G, Wang E, Yan H, Yuan Q, Zhang W, Lou X, Wu H, Tan Z (2008) Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Arch Microbiol 189:431–439

    PubMed  CAS  Google Scholar 

  • Zimmerman NB, Vitousek PM (2012) Fungal endophyte communities reflect environmental structuring across Hawaiian landscape. Proc Natl Acad Sci U S A 109:13022–13027

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the New Jersey Agricultural Experiment Station and Central Washington University for resources and financial support. We are also grateful to Dr. John Craighead for discussions regarding the roles of bacteria in the human microbiome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. White Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

White, J.F., Torres, M.S., Johnson, H., Irizarry, I., Tadych, M. (2014). A Functional View of Plant Microbiomes: Endosymbiotic Systems That Enhance Plant Growth and Survival. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_21

Download citation

Publish with us

Policies and ethics