Skip to main content

Climate Change and Plankton Spectrum of Mangrove Ecosystem

  • Chapter
  • First Online:
Sensitivity of Mangrove Ecosystem to Changing Climate
  • 1996 Accesses

Abstract

The pelagic environment of the ocean supports two basic types of marine organisms. One type comprises the plankton, or those organisms whose powers of locomotion are such that they are incapable of making their way against the current and thus are passively transported by currents in the aquatic system, and the other type includes the nekton (free swimmers), which are free-floating animals that, in contrast to plankton, are strong enough to swim against currents and are therefore independent of water movements. The category of nekton includes fish, squid and marine mammals.

Plankton sustain the world fishery. Don’t let someone to crush the plankton community and destroy the natural protein bank.

The Author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Important References

  • Boyce D, Lewis M, Worm B (2010) Global phytoplankton decline over the past century. Nature 466(7306):591–596

    Article  PubMed  CAS  Google Scholar 

  • Buskey EJ, Wysor B, Hyatt CJ (1998) The role of hypersalinity in the persistence of the Texas “brown tide” in the Laguna Madre. J Plankton Res 20:1553–1565

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655. doi:10.1038/326655A0

    Article  CAS  Google Scholar 

  • Chaudhuri AB, Choudhury A (1994) Mangroves of the Sundarbans, vol I, India. IUCN – The World Conservation Union, Bangkok

    Google Scholar 

  • Garrison D (2012) Long term study reveals potential results of climate change. American Institute for Biological Sciences. www.Internet.edu. Accessed on 5 Oct 2010

  • Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344

    Article  PubMed  Google Scholar 

  • Hazra S, Ghosh T, Dasgupta R, Gautam S (2002) Sea level and associated changes in the Sundarbans. Sci Cult 68(9–12):309–321

    Google Scholar 

  • Kain JM, Fogg GE (1958) Studies on the growth of marine phytoplankton I. Asterionella japonica Gran. J Mar Biol Assoc UK 37:397–413

    Article  Google Scholar 

  • Kain JM, Fogg GE (1960) Studies on the growth of marine phytoplankton III. Prorocentrum micans Ehrenburg. J Mar Biol Assoc UK 39:33–50

    Article  Google Scholar 

  • Klausmeier CA (2012) Successional dynamics in the seasonally forced diamond food web. Am Nat 180:1–16

    Article  PubMed  Google Scholar 

  • Kremer A (2012) How well can existing forests withstand climate change? In: EUFORGEN climate change and forest genetic diversity: implications for sustainable forest management in Europe. pp 3–17

    Google Scholar 

  • Lalli CM, Parsons TR (1997) Energy flow and nutrient cycling. In: Biological oceanography: an introduction, 2nd edn. Open University/Elsevier. University of British Columbia, Vancouver, Canada, pp 112–146

    Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:710

    Google Scholar 

  • Meskhidze N, Nenes A (2006) Phytoplankton and cloudiness in the Southern Ocean. Science 314(5804):1419–1423. doi:10.1126/science.1131779

    Article  PubMed  CAS  Google Scholar 

  • Mitra A (2000) The Northeast coast of the Bay of Bengal and deltaic Sundarbans. In: Sheppard C (ed) Seas at the millennium – an environmental evaluation. Pergamon, Amsterdam, pp 143–157

    Google Scholar 

  • Mitra A, Gangopadhyay A, Dube A, Schmidt ACK, Banerjee K (2009) Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Curr Sci 97:1445–1452

    CAS  Google Scholar 

  • Mitra A, Sengupta K, Banerjee K (2011) Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. For Ecol Manag 261(7):1325–1335

    Article  Google Scholar 

  • Mitra A, Zaman S, Kanti Ray S, Sinha S, Kakoli Banerjee K (2012) Inter-relationship between phytoplankton cell volume and aquatic salinity in Indian Sundarbans. Nat Acad Sci Lett 35:485–491. Springer doi:10.1007/s40009-012-0083-1

    Google Scholar 

  • Moreira GS (1975) Studies on the salinity resistance of the copepod Euterpina acutifrons (Dana). In: Vernberg FJ (ed) Physiological ecology of Estuarine organisms. University of South Carolina Press, Columbia, pp 73–80

    Google Scholar 

  • Qasim SZ (2003) Indian estuaries. Allied Publisher Pvt. Limited, New Delhi, 420pp

    Google Scholar 

  • Raha A, Das S, Banerjee K, Mitra A (2012) Climate change impacts on Indian Sundarbans: a time series analysis (1924–2008). Biodivers Conserv 21:1289–1307. Springer doi:10.1007/s10531-012-0260-z

  • Redfield AC (1934) In: Danial RJ (ed) James Johnstone memorial volume. On the proportions of organic derivations in sea water and their relation to the composition of plankton, University of Liverpool Press, Liverpool, 176pp

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–207

    CAS  Google Scholar 

  • Santhanam R, Srinivasan A (1998) A manual of marine zooplankton. Oxford and IBH Publishing company Pvt. Ltd, New Delhi, pp 1–4

    Google Scholar 

  • Sarkar SK, Singh BN, Choudhury A (1986a) Composition and variation in abundance of zooplankton in the Hooghly Estuary, West Bengal, India. Proc Indian Acad Sci 95:125–134

    Article  Google Scholar 

  • Sarkar SK, Singh BN, Choudhury A (1986b) The ecology of copepods from Hooghly Estuary, West Bengal, India. Mahasagar – Bull Nat Inst Oceanogr 19:103–112

    Google Scholar 

  • Shetty HPC, Saha SB, Ghosh BB (1963) Observations on the distribution and fluctuations of plankton in the Hoogly-Matla estuarine system, with notes on their relation to commercial fish landings. Indian J Fish 8:326–363

    Google Scholar 

  • Stauber JL, Florence TM (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol 94:511–519

    Article  CAS  Google Scholar 

  • Taylor KC, White J, Severinghaus J, Brook E, Mayewski P, Alley R, Steig E, Spencer M (2004) Abrupt climate change around 22 ka on the Siple Coast of Antarctica. Quat Sci Rev 23(1–2):7–15

    Article  Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088. doi:10.1126/science.1224836

    Article  PubMed  CAS  Google Scholar 

  • Vernberg FJ, Vernberg WB (1975) Adaption to extreme environments. In: Vernberg FJ (ed) Physiological ecology of estuarine organisms. University of South Carolina Press, Columbia, pp 165–180

    Google Scholar 

  • WWF News Letter (2001) Impacts of climate change on life in Africa http://wwf.panda.org/?3866/Newsletter-March-2001. Accessed on 3 July 2013

Internet References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Mitra, A. (2013). Climate Change and Plankton Spectrum of Mangrove Ecosystem. In: Sensitivity of Mangrove Ecosystem to Changing Climate. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1509-7_5

Download citation

Publish with us

Policies and ethics