Skip to main content

Bioprospecting of Plant Essential Oils for Medicinal Uses

  • Chapter
  • First Online:
Environment and Sustainable Development

Abstract

Essential oils of plant origin have a long history of use by various civilizations in the world. They find place in almost all traditional systems of medicine like Ayurveda, Siddha, Unani, and Chinese traditional system of medicine. Essential oils extractable by steam distillation and various solvents from different parts of plants constitute complex mixtures of low molecular weight compounds. Terpenes and terpenoids form the major constituents of essential oils and determine the aroma as well as biological properties. Traditionally essential oils are prescribed by the healers for a vareity of ailments ranging from skin infections to cancer. Many of these treatments have stood the test of time. As such essential oils offer tremendous scope for reverse pharmacological studies. With the use of HPTLC, HPLC, GC, NMR, GCMS, and the entry of phytochemists, the essential oil research has matured in to a science of its own. We are presenting an overview of the biological properties and potential applications of essential oils in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi M, Salehnia A, Mortazavi SH (2003) Antioxidant, antidiabetic, antihyperlipidemic, reproduction stimulatory properties and safety of essential oil of Satureja Khuzestanica in rat in vivo: a oxicopharmacological study. Med Sci Monit Int Med J Exp Clin Res 9:331

    Google Scholar 

  • Agarwal V, Lal P, Pruthi V (2008) Prevention of Candida albicans biofilm by plant oils. Mycopathologia 165:13–19

    CAS  Google Scholar 

  • Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    CAS  Google Scholar 

  • Ahmed SB, Sghaier RM, Guesmi F et al (2011) Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia). Nat Prod Res 12:1195–1201

    Google Scholar 

  • Al-Hader AA, Hasan ZA, Aqel MB (1994) Hyperglycemic and insulin release inhibitory effects of Rosmarinus officinalis. J Ethnopharmacol 43:217–221

    CAS  Google Scholar 

  • Allahverdiyev A, Duran N, Ozguven M et al (2004) Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine 11:657–661

    CAS  Google Scholar 

  • Almeida I, Sales AD, Pereira VD et al (2007) Antigiardial activity of Ocimum basilicum essential oil. Parasitol Res 101:443–452

    Google Scholar 

  • Alviano W, Mendonca-Filho R, Alviano D et al (2005) Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol Immunol 20:101–105

    CAS  Google Scholar 

  • Anthony JP, Fyfe L, Smith H (2005) Plant active components – a resource for antiparasitic agents? Trends Parasitol 21:462–468

    CAS  Google Scholar 

  • Armaka M, Papanikolaou E, Sivropoulou A et al (1999) Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res 43: 79–92

    CAS  Google Scholar 

  • Armstrong JS (2006) Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28:253–260

    CAS  Google Scholar 

  • Astani A, Reichling J, Schnitzler P (2011) Screening for antiviral activities of isolated compounds from essential oils. Evid Based Complement Altern Med. doi:10.1093/ecam/nep187

    Google Scholar 

  • Baananou S, Bouftira I, Mahmoud A et al (2012) Antiulcerogenic and antibacterial activities of Apium graveolens essential oil and extract. Nat Prod Res. doi:10.1080/ 14786419.2012. 717284

    Google Scholar 

  • Bajpai VK, Yoon JI, Kang SC (2009) Antifungal potential of essential oil and various organic extracts of Nandina domestica Thunb. against skin infectious fungal pathogens. Appl Microbiol Biotechnol 83:1127–1133

    CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475

    CAS  Google Scholar 

  • Bansod S, Rai M (2008) Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J Med Sci 3:81–88

    Google Scholar 

  • Behnia M, Haghighi A, Komeiliza H et al (2008) In vitro antiamoebic activity of Allium sativum in comparison with metronidazole against Entamoeba histolytica. Iran J Parasitol 3:32–38

    Google Scholar 

  • Benencia F, Courreges MC (1999) Antiviral activity of sandalwood oil against herpes simplex viruses-1 and-2. Phytomedicine 6:119–123

    CAS  Google Scholar 

  • Benencia F, Courreges MC (2000) In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res 14:495–500

    CAS  Google Scholar 

  • Benkeblia N (2004) Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT- Food Sci Technol 37:263–268

    CAS  Google Scholar 

  • Bishop CD (1995) Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden amp; Betche) Cheel (tea tree) against Tobacco Mosaic Virus. J Essent Oil Res 7:641–644

    CAS  Google Scholar 

  • Bozin B, Mimica-Dukic N, Simin N et al (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54:1822–1828

    CAS  Google Scholar 

  • Broadhurst CL, Polansky MM, Anderson RA (2000) Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem 48:849–852

    CAS  Google Scholar 

  • Buhagiar JA, Podesta MT, Wilson AP et al (1999) The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extract from the conifer Tetraclinis articulata. Anticancer Res 19:5435–5444

    CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods– a review. Int J Food Microbiol 94:223–253

    CAS  Google Scholar 

  • Calcabrini A, Stringaro A, Toccacieli L et al (2004) Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Invest Dermatol 122:349–360

    CAS  Google Scholar 

  • Carnesecchi S, Bras-Goncalves R, Bradaia A et al (2004) Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett 215:53–59

    CAS  Google Scholar 

  • Carson CF, Ashton L, Dry L et al (2001) Melaleuca alternifolia (tea tree) oil gel (6 %) for the treatment of recurrent herpes labialis. J Antimicrob Chemother 48:450–451

    CAS  Google Scholar 

  • Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62

    CAS  Google Scholar 

  • Cavalieri E, Mariotto S, Fabrizi C et al (2004) α-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun 315:589–594

    CAS  Google Scholar 

  • Cermelli C, Fabio A, Fabio G et al (2008) Effect of eucalyptus essential oil on respiratory bacteria and viruses. Curr Microbiol 56:89–92

    CAS  Google Scholar 

  • Cetin B, Ozer H, Cakir A et al (2009) Chemical composition of hydrodistilled essential oil of Artemisia incana (L.) Druce and antimicrobial activity against food borne microorganisms. Chem Biodivers 6:2302–2310

    CAS  Google Scholar 

  • Chen D, Daniel KG, Kuhn DJ et al (2004) Green tea and tea polyphenols in cancer prevention. Front Biosci 9:2618–2631

    CAS  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895

    CAS  Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    CAS  Google Scholar 

  • Clarke R, Armitage J (2002) Antioxidant vitamins and risk of cardiovascular disease. Review of large-scale randomised trials. Cardiovasc Drugs Ther 16:411–415

    CAS  Google Scholar 

  • Collins AR (2005) Antioxidant intervention as a route to cancer prevention. Eur J Cancer 41:1923–1930

    CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Cox SD, Mann CM, Markham JL et al (2000) The mode of antimicrobial action of essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175

    CAS  Google Scholar 

  • Czarnecka AM, Golik P, Bartnik E (2006) Mitochondrial DNA mutations in human neoplasia. J Appl Genet 47:67–78

    Google Scholar 

  • Dahanukar SA, Kulkarni RA, Rege NN (2000) Pharmacology of medicinal plants and natural products. Indian J Pharmacol 32:81–118

    Google Scholar 

  • Darshan S, Doreswamy R (2004) Patented anti-inflammatory plant drug development from traditional medicine. Phytother Res 18:343–357

    CAS  Google Scholar 

  • De Flora S, Bagnasco M, Vainio H (1999) Modulation of genotoxic and related effects by carotenoids and vitamin A in experimental models: mechanistic issues. Mutagenesis 14:153–172

    Google Scholar 

  • De Logu A, Loy G, Pellerano ML et al (2000) Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res 48:177–185

    Google Scholar 

  • De Sousa AC, Gattass CR, Alviano DS et al (2004) Melissa officinalis L. essential oil: antitumoral and antioxidant activities. J Pharm Pharmacol 56:677–681

    Google Scholar 

  • Delaquis PJ, Stanich K, Girard B et al (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74:101–109

    CAS  Google Scholar 

  • Dell’Agli M, Sanna C, Rubiolo P et al (2012) Anti-plasmodial and insecticidal activities of the essential oils of aromatic plants growing in the Mediterranean area. Malar J 11:219

    Google Scholar 

  • Devkatte A, Zore GB, Karuppayil SM (2005) Potential of plant oils as inhibitors of Candida albicans growth. FEMS Yeast Res 5:867–873

    CAS  Google Scholar 

  • Di Pasqua R, Betts G, Hoskins N et al (2007) Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem 55:4863–4870

    Google Scholar 

  • Dikshit A, Dubey NK, Tripathi NN et al (1983) Cedrus oil‒ a promising storage fungitoxicant. J Stored Prod Res 19:159–162

    CAS  Google Scholar 

  • Djenane D, Aider M, Yangüela J et al (2012) Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157: H7 and S. aureus during storage at abuse refrigeration temperature. Meat Sci 92:667–674

    CAS  Google Scholar 

  • Dob T, Dahmane D, Benabdelkader T et al (2006) Studies on the essential oil composition and antimicrobial activity of Thymus algeriensis Boiss. et Reut. Int J Aromather 16:95–100

    CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    CAS  Google Scholar 

  • Dryden M, Dailly S, Crouch M (2004) A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J Hosp Infect 58:86–87

    Google Scholar 

  • Dudai N, Weinstein Y, Krup M et al (2005) Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med 71:484–488

    CAS  Google Scholar 

  • Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323

    CAS  Google Scholar 

  • El Babili F, Bouajila J, Souchard JP et al (2011) Oregano: chemical analysis and evaluation of its anti-malarial, antioxidant, and cytotoxic activities. J Food Sci 76:C512–C518

    Google Scholar 

  • Evandri MG, Battinelli L, Daniele C et al (2005) The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem Toxicol 43:1381–1387

    CAS  Google Scholar 

  • Fabio A, Cermelli C, Fabio G et al (2007) Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. Phytother Res 21:374–377

    CAS  Google Scholar 

  • Ferguson LR, Philpott M, Karunasinghe N (2004) Dietary cancer and prevention using antimutagens. Toxicology 198:147–159

    CAS  Google Scholar 

  • Fontenelle ROS, Morais SM, Brito EHS et al (2008) Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J Appl Microbiol 104:1383–1390

    CAS  Google Scholar 

  • Galvao LCDC, Furletti VF, Bersan SMF et al (2012) Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evid Based Complement Altern Med. doi:10.1155/2012/751435

    Google Scholar 

  • Garozzo A, Timpanaro R, Bisignano B et al (2009) In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett Appl Microbiol 49:806–808

    CAS  Google Scholar 

  • Ghaisas S, Bhide S (1994) In vitro studies on chemoprotective effect of purnark against benzopyrene-induced chromosomal damage in human lymphocytes. Cell Biol Int 18:21–28

    CAS  Google Scholar 

  • Gill CI, Boyd A, McDermott E et al (2005) Potential anti‐cancer effects of virgin olive oil phenols on colorectal carcinogenesis models in vitro. Int J Cancer 117:1–7

    CAS  Google Scholar 

  • Gomes-Carneiro MR, Dias DM, De-Oliveira ACAX et al (2005) Evaluation of mutagenic and antimutagenic activities of α-bisabolol in the Salmonella microsome assay. Mutat Res Genet Toxicol Environ Mutagen 585:105–112

    CAS  Google Scholar 

  • Gulluce M, Sahin F, Sokmen M et al (2007) Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem 103:1449–1456

    CAS  Google Scholar 

  • Gustafson JE, Liew YC, Chew S et al (1998) Effects of tea tree oil on Escherichia coli. Lett Appl Microbiol 26:194–198

    CAS  Google Scholar 

  • Hajhashemi V, Ghannadi A, Sharif B (2003) Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 89:67–71

    Google Scholar 

  • Hamid AA, Aiyelaagbe OO, Usman LA (2011) Essential oils: its medicinal and pharmacological uses. Int J Curr Res 33:86–98

    Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2004) Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J Antimicrob Chemother 53:1081–1085

    CAS  Google Scholar 

  • Hastak K, Lubri N, Jakhi SD et al (1997) Effect of turmeric oil and turmeric oleoresin on cytogenetic damage in patients suffering from oral submucous fibrosis. Cancer Lett 116:265–269

    CAS  Google Scholar 

  • Hata T, Sakaguchi I, Mori M et al (2003) Induction of apoptosis by Citrus paradisi essential oil in human leukemic (HL-60) cells. In Vivo 17:553–559

    CAS  Google Scholar 

  • Hayashi K, Kamiya M, Hayashi T (1995) Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV. Planta Med 61:237–241

    CAS  Google Scholar 

  • Hernandez-Ceruelos A, Madrigal-Bujaidar E, De La Cruz C (2002) Inhibitory effect of chamomile essential oil on the sister chromatid exchanges induced by daunorubicin and methyl methanesulfonate in mouse bone marrow. Toxicol Lett 135:103–110

    CAS  Google Scholar 

  • Hirulkar NB, Agrawal M (2010) Antimicrobial activity of rose petals extract against some pathogenic bacteria. Inter J Pharm Biol Arch 1(05):478–484

    Google Scholar 

  • Hong EJ, Na KJ, Choi IG et al (2004) Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pharm Bull 27:863–866

    CAS  Google Scholar 

  • Hussain AI, Anwar F, Hussain Sherazi ST et al (2008) Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 108:986–995

    CAS  Google Scholar 

  • Idaomar M, El Hamss R, Bakkali F et al (2002) Genotoxicity and antigenotoxicity of some essential oils evaluated by wing spot test of Drosophila melanogaster. Mutat Res Genet Toxicol Environ Mutagen 513:61–68

    CAS  Google Scholar 

  • Ioannou E, Poiata A, Hancianu M et al (2007) Chemical composition and in vitro antimicrobial activity of the essential oils of flower heads and leaves of Santolina rosmarinifolia L. from Romania. Nat Prod Res 21:18–23

    CAS  Google Scholar 

  • Ipek E, Zeytinoglu H, Okay S et al (2005) Genotoxicity and antigenotoxicity of origanum oil and carvacrol evaluated by Ames Salmonella/ microsomal test. Food Chem 93:551–556

    CAS  Google Scholar 

  • Irkin R, Korukluoglu M (2009) Effectiveness of Cymbopogon citratus L. essential oil to inhibit the growth of some filamentous fungi and yeasts. J Med Food 12:193–197

    CAS  Google Scholar 

  • Iwalokun B, Gbenle G, Adewole T et al (2003) Effects of Ocimum gratissimum L. essential oil at sub-inhibitory concentrations on virulent and multidrug-resistant Shigella strains from Lagos, Nigeria. APMIS 111:477–482

    CAS  Google Scholar 

  • Iwalokun BA, Gbenle GO, Adewole TA et al (2008) Effects of Ocimum gratissimum L. essential oil at sub inhibitory concentrations on virulent and multidrug‐resistant Shigella strains from Lagos, Nigeria. APMIS 111:477–482

    Google Scholar 

  • Juergens UR, Stober M, Vetter H (1998) Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1,8-cineole) in human blood monocytes in vitro. Eur J Med Res 3:508

    CAS  Google Scholar 

  • Juliao LS, Bizzo HR, Souza AM et al (2009) Essential oils from two Lantana species with antimycobacterial activity. Nat Prod Commun 4:1733

    Google Scholar 

  • Kada T, Shimoi K (1987) Desmutagens and bio‐antimutagens–their modes of action. Bioessays 7:113–116

    CAS  Google Scholar 

  • Kaefer CM, Milner JA (2008) The role of herbs and spices in cancer prevention. J Nutr Biochem 19:347–361

    CAS  Google Scholar 

  • Kaur S, Grover IS, Kumar S (1997) Antimutagenic potential of ellagic acid isolated from Terminalia arjuna. Ind J Exp Biol 35:478

    CAS  Google Scholar 

  • Khosravi AR, Minooeianhaghighi MH, Shokri H et al (2011) The potential inhibitory effect of Cuminum cyminum, Ziziphora clinopodioides and Nigella sativa essential oils on the growth of Aspergillus fumigatus and Aspergillus flavus. Braz J Microbiol 42:216–224

    CAS  Google Scholar 

  • Kim EY, Baik IH, Kim JH et al (2004) Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36:333–338

    Google Scholar 

  • Kordali S, Kotan R, Mavi A et al (2005) Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, A. santonicum, and A. spicigera essential oils. J Agric Food Chem 53:9452–9458

    CAS  Google Scholar 

  • Kulisic T, Radonic A, Katalinic V et al (2004) Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 85:633–640

    CAS  Google Scholar 

  • Kumar R, Mishra AK, Dubey NK et al (2007) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 115:159–164

    CAS  Google Scholar 

  • Kumar A, Shukla R, Singh P et al (2010) Chemical composition, antifungal and anti-aflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem Toxicol 48:539–543

    CAS  Google Scholar 

  • Lalita B (1994) In vitro studies on the effect of glycyrrhizin from Indian Glycyrrhiza glabra Linn. on some RNA and DNA viruses. Indian J Pharmacol 26:194

    Google Scholar 

  • Lambert RJW, Skandamis PN, Coote P et al (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    CAS  Google Scholar 

  • Lang G, Buchbauer G (2011) A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals: a review. Flav Frag J 27:13–39

    Google Scholar 

  • Lee BK, Kim JH, Jung JW et al (2005) Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol Lett 157:49–56

    CAS  Google Scholar 

  • Li Y, Li MY, Wang L et al (2004) Induction of apoptosis of cultured hepatocarcinoma cell by essential oil of Artemisia annul L. J Sichuan Univ Med Sci Ed 35:337

    CAS  Google Scholar 

  • Lo Cantore P, Iacobellis NS, De Marco A et al (2004) Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller Var. vulgare (Miller) essential oils. J Agric Food Chem 52:7862–7866

    CAS  Google Scholar 

  • Lopes-Lutz D, Alviano DS, Alviano CS et al (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69:1732–1738

    CAS  Google Scholar 

  • Lopez P, Sanchez C, Batlle R et al (2005) Solid- and vapor phase antimicrobial activities of six essential oils: susceptibility of selected food borne bacterial and fungal strains. J Agric Food Chem 53:6939–6946

    CAS  Google Scholar 

  • Lopez P, Sanchez C, Batlle R et al (2007) Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against food borne microorganisms. J Agri Food Chem 55:4348–4356

    CAS  Google Scholar 

  • Luk SU, Lee TKW, Liu J et al (2011) Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population. PLoS One 6:e19804

    CAS  Google Scholar 

  • Machado M, Dinis AM, Salgueiro L et al (2010) Anti-Giardia activity of phenolic-rich essential oils of Thymbra capitata, Origanum virens, Thymus zygis subsp. Sylvestris chemotype Thymol, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitol Res 106:1205–1215

    Google Scholar 

  • Maestri DM, Nepote V, Lamarque AL, Zygadlo JA (2006) Natural products as antioxidants. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost, Trivandrum, pp 105–135

    Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J et al (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087

    CAS  Google Scholar 

  • Manosroi J, Dhumtanom P, Manosroi A (2006) Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. Cancer Lett 235:114–120

    CAS  Google Scholar 

  • Mansour MA, Ginawi OT, El-Hadiyah T et al (2001) Effects of the volatile oil constituents of Nigella sativa on carbon tetrachloride induced hepatotoxicity in mice: evidence for antioxidant effects of thymoquinone. Res Commun Mol Pathol Pharmacol 110:239–251

    CAS  Google Scholar 

  • Marles RJ, Farnsworth NR (1995) Antidiabetic plants and their active constituents. Phytomedicine 2:137–189

    CAS  Google Scholar 

  • Mastura M, Azah MN, Khozirah S et al (1999) Anticandidal and anti- dermatophytic activity of Cinnamomum species essential oils. Cytobios 98:17–23

    CAS  Google Scholar 

  • Mau JL, Lai EY, Wang NP et al (2003) Composition and antioxidant activity of the essential oil from Curcuma zedoaria. Food Chem 82:583–591

    CAS  Google Scholar 

  • Maxia A, Marongiu B, Piras A et al (2009) Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. Fitoterapia 80:57–61

    CAS  Google Scholar 

  • May J, Chan C, King A et al (2000) Time-kill studies of tea tree oils on clinical isolates. J Antimicrob Chemother 45:639–643

    CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    CAS  Google Scholar 

  • Meneses R, Ocazionez RE, Martínez JR et al (2009) Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Ann Clin Microbiol Antimicrob 8:8

    Google Scholar 

  • Mezzoug N, Elhadri A, Dallouh A et al (2007) Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat Res Genet Toxicol Environ Mutagen 629:100–110

    CAS  Google Scholar 

  • Miguel MG (2010) Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15:9252–9287

    Google Scholar 

  • Milhau G, Valentin A, Benoit F et al (1997) In vitro anti-malarial activity of eight essential oils. J Essent Oil Res 9:329–333

    CAS  Google Scholar 

  • Milner JA (2001) A historical perspective on garlic and cancer. J Nutr 131:1027–1031

    Google Scholar 

  • Mimica-Dukic N, Bozin B, Sokovic M et al (2004) Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J Agric Food Chem 52:2485–2489

    CAS  Google Scholar 

  • Minami M, Kita M, Nakaya T et al (2003) The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol Immunol 47:681

    CAS  Google Scholar 

  • Mkaddem M, Bouajila J, Ennajar M et al (2009) Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J Food Sci 74:358–363

    Google Scholar 

  • Moreno L, Bello R, Primo-Yufera E et al (2002) Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother Res 16(S1):10–13

    Google Scholar 

  • Morita T, Jinno K, Kawagishi H et al (2003) Hepatoprotective effect of myristicin from nutmeg (Myristica fragrans) on lipopolysaccharide/d-galactosamine-induced liver injury. J Agric Food Chem 51:1560–1565

    CAS  Google Scholar 

  • Moteki H, Hibasami H, Yamada Y et al (2002) Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. Oncol Rep 9:757–760

    CAS  Google Scholar 

  • Nakatsu T, Lupo AT, Chinn JW et al (2000) Biological activity of essential oils and their constituents. Stud Nat Prod Chem 21:571–631

    CAS  Google Scholar 

  • Odin AP (1997) Vitamins as antimutagens: advantages and some possible mechanisms of antimutagenic action. Mutat Res Genet Toxicol Environ Mutagen 386:39–67

    CAS  Google Scholar 

  • Onwukaeme ND (1995) Anti-inflammatory activities of flavonoids of Baphia nitida Lodd. (Leguminosae) on mice and rats. J Ethnopharmacol 46:121–124

    CAS  Google Scholar 

  • Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69:1046–1055

    Google Scholar 

  • Ozbek H, Ugraş S, Dulger H et al (2003) Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia 74:317–319

    CAS  Google Scholar 

  • Ozcan MM, Chalchat JC (2008) Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int J Food Sci Nutr 59:691–698

    CAS  Google Scholar 

  • Ozek G, Demirci F, Ozek T et al (2010) Gas chromatographic–mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm. and evaluation for biological activity. J Chromatogr A 1217:741–748

    Google Scholar 

  • Peighami-Ashnaei S, Farzaneh M, Sharifi-Tehrani A et al (2009) Effect of essential oils in control of plant diseases. Commun Agric Appl Biol Sci 74:843

    CAS  Google Scholar 

  • Pepeljnjak S, Kosalec I, Kalodera Z et al (2005) Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae). Acta Pharm 55:417

    CAS  Google Scholar 

  • Perez SG, Ramos-Lopez MA, Sanchez-miranda E et al (2012) Antiprotozoa activity of some essential oils. J Med Plant Res 6:2901–2908

    CAS  Google Scholar 

  • Pinto E, Vale-Silva L, Cavaleiro C et al (2009) Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol 58:1454–1462

    Google Scholar 

  • Politeo O, Jukic M, Milos M (2007) Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food Chem 101:379–385

    CAS  Google Scholar 

  • Puatanachokchai R, Kishida H, Denda A et al (2002) Inhibitory effects of lemon grass Cymbopogon citrates extract on the early phase of hepatocarcinogenesis after initiation with diethylnitrosamine in male Fischer 344 rats. Cancer Lett 183:9–15

    CAS  Google Scholar 

  • Pusztai R, Abrantes M, Sherly J et al (2010) Antitumor-promoting activity of lignans: inhibition of human cytomegalovirus IE gene expression. Anticancer Res 30:451–454

    CAS  Google Scholar 

  • Rabadia AG, Kamat S, Kamat D (2012) Antifungal activity of essential oils against fluconazole resistant fungi. Int J Phytomed 3:506–510

    Google Scholar 

  • Rafii F, Shahverdi AR (2007) Comparison of essential oils from three plants for enhancement of antimicrobial activity of nitrofurantoin against enterobacteria. Chemotherapy 53:21–25

    CAS  Google Scholar 

  • Rajput SB, Karuppayil SM (2013) β- Asarone, an active principle of Acorus calamus rhizome, inhibits morphogenesis, biofilm formation and ergosterol biosynthesis in Candida albicans. Phytomedicine 20:139–142. http://dx.doi.org/10.1016/j.phymed.2012.09.029

  • Rao A, Zhang Y, Muend S et al (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54:5062–5069

    CAS  Google Scholar 

  • Rasooli I, Fakoor MH, Yadegarinia D et al (2008) Anti-mycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils. Int J Food Microbiol 122:135–139

    CAS  Google Scholar 

  • Rather MA, Dar BA, Dar MY et al (2012) Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine 19:1185–1190

    CAS  Google Scholar 

  • Raut JS, Shinde RB, Chauhan NM et al (2013) Terpenoids of plant origin inhibits morphogenesis, adhesion and biofilm formation by Candida albicans. Biofouling 29:87–96

    CAS  Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Yoshinari T et al (2008) Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int J Food Microbiol 123:228–233

    CAS  Google Scholar 

  • Reichling J, Koch C, Stahl-Biskup E et al (2005) Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med 71:1123–1127

    CAS  Google Scholar 

  • Roller S, Ernest N, Buckle J (2009) The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and-resistant Staphylococcus aureus (MSSA and MRSA). J Altern Complement Med 15:275–279

    Google Scholar 

  • Romeilah RM, Fayed SA, Mahmoud GI (2010) Chemical compositions, antiviral and antioxidant activities of seven essential oils. J Appl Sci Res 6:50–62

    CAS  Google Scholar 

  • Rosato A, Vitali C, De Laurentis N et al (2007) Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 14:727–732

    CAS  Google Scholar 

  • Rota C, Carraminana JJ, Burillo J et al (2004) In vitro antimicrobial activity of essential oils from aromatic plants against selected food borne pathogens. J Food Prot 67:1252–1256

    CAS  Google Scholar 

  • Saeidnia S, Gohari AR, Hadjiakhoondi A (2008) Trypanocidal activity of oil of the young leaves of Nepeta cataria L. obtained by solvent extraction. J Med Plant 7:54–57

    CAS  Google Scholar 

  • Saidana D, Mahjoub MA, Boussaada O et al (2008) Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveanai (Tamaricaceae). Microbiol Res 163:445–455

    CAS  Google Scholar 

  • Saikia D, Khanuja SPS, Kahol AP et al (2001) Comparative antifungal activity of essential oils and constituents from three distinct genotypes of Cymbopogon spp. Curr Sci 80:1264–1265

    CAS  Google Scholar 

  • Salim EI, Fukushima S (2003) Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutr Cancer 45:195–202

    Google Scholar 

  • Samy RP, Gopalakrishnakone P (2010) Therapeutic potential of plants as anti-microbials for drug discovery. Evid Based Complement Altern Med 7:283–294

    Google Scholar 

  • Santin RM, Oliveira SA, Nakamura VC et al (2009) In vitro activity of the essential oil of Cymbopogon citrates. Parasitol Res 105:1489–1496

    Google Scholar 

  • Santoro GF, Cardoso MG, Guimares LGL et al (2007) Effect of oregano (Origanum vulgare L) and thyme (Thymus vulgare L.) essential oils on Trypanosoma cruzi. (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res 100:783–790

    Google Scholar 

  • Santos AO, Santin AC, Yamaguchi MU et al (2010) Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Ann Trop Med Parasitol 104:475–483

    CAS  Google Scholar 

  • Sartorelli P, Marquioreto AD, Amaral-Baroli A et al (2007) Chemical composition and antimicrobial activity of the essential oils from two species of Eucalyptus. Phytother Res 21:231–233

    CAS  Google Scholar 

  • Sauter IP, Rossa GE, Lucas AM et al (2012) Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind Crop Prod 40:292–295

    CAS  Google Scholar 

  • Schnitzler P, Schon K, Reichling J (2001) Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 56:343

    CAS  Google Scholar 

  • Schnitzler P, Koch C, Reichling J (2007) Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrob Agents Chemother 51:1859–1862

    CAS  Google Scholar 

  • Schuhmacher A, Reichling J, Schnitzler P (2003) Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 10:504–510

    CAS  Google Scholar 

  • Setzer WN, Ogungbe IV (2012) In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 6(7):e1727

    CAS  Google Scholar 

  • Shah WA, Dar MY, Zagar MI et al (2012) Chemical composition and antimicrobial activity of the leaf essential oil of Skimmia laureola growing wild in Jammu and Kashmir. India Nat Prod Res. doi:10.1080/14786419.2012.696252

    Google Scholar 

  • Shahabi S, Ayazi RF, Kamalinejad M et al (2008) Anti-giardia activity of Carum copticum on Giardia lamblia cysts in vitro. Pejouhesh 32:303–307

    Google Scholar 

  • Shan B, Cai YZ, Brooks JD et al (2007) The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 117: 112–119

    CAS  Google Scholar 

  • Sharma M, Kishore K, Gupta SK et al (2001) Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 225:75–83

    CAS  Google Scholar 

  • Siddiqui YM, Ettayebi M, Haddad AM et al (1996) Effect of essential oils on the enveloped viruses: antiviral activity of oregano and clove oils on herpes simplex virus type 1 and Newcastle disease virus. Med Sci Res 24:185–186

    CAS  Google Scholar 

  • Silva J, Abebe W, Sousa SM et al (2003) Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol 89:277–283

    CAS  Google Scholar 

  • Singh S, Majumdar DK (1997) Evaluation of anti-inflammatory activity of fatty acids of Ocimum sanctum fixed oil. Indian J Exp Biol 35:380

    CAS  Google Scholar 

  • Singh G, Kapoor IP, Pandey SK et al (2002) Studies on essential oils: part 10; antibacterial activity of volatile oils of some spices. Phytother Res 16:680–682

    CAS  Google Scholar 

  • Singh G, Marimuthu P, de Heluani CS et al (2006) Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components. J Agric Food Chem 54:174–181

    CAS  Google Scholar 

  • Singh G, Kapoor IPS, Singh P et al (2008) Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem Toxicol 46:3295–3302

    CAS  Google Scholar 

  • Singh P, Shukla R, Kumar A et al (2010) Effect of Citrus reticulata and Cymbopogon citratus essential oils on Aspergillus flavus growth and aflatoxin production on Asparagus racemosus. Mycopathologia 170:195–202

    Google Scholar 

  • Sinico C, De Logu A, Lai F et al (2005) Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur J Pharma Biopharma 59:161–168

    CAS  Google Scholar 

  • Sivropoulou A, Nikolaou C, Papanikolaou E et al (1997) Antimicrobial, cytotoxic, and antiviral activities of Salvia fructicosa essential oil. J Agric Food Chem 45:3197–3201

    CAS  Google Scholar 

  • Sonboli A, Babakhani B, Mehrabian AR (2006) Antimicrobial activity of six constituents of essential oil from Salvia. Z Naturforsch 61:160–164

    CAS  Google Scholar 

  • Soylu EM, Soylu S, Kurt S (2006) Antimicrobial activity of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128

    CAS  Google Scholar 

  • Sylvestre M, Legault J, Dufour D et al (2005) Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. Phytomedicine 12:299–304

    CAS  Google Scholar 

  • Sylvestre M, Pichette A, Longtin A et al (2006) Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J Ethnopharmacol 103:99–102

    CAS  Google Scholar 

  • Talpur N, Echard B, Ingram C et al (2005) Effects of a novel formulation of essential oils on glucose–insulin metabolism in diabetic and hypertensive rats: a pilot study. Diabetes Obes Metab 7:193–199

    CAS  Google Scholar 

  • Tariku Y, Hymete A, Hailu A et al (2011) In vitro evaluation of antileishmanial activity and toxicity of essential oils of Artemisia absinthium and Echinops kebericho. Chem Biodivers 8(4):614–623

    CAS  Google Scholar 

  • Tavares AC, Goncalves MJ, Cavaleiro C et al (2008) Essential oil of Daucus carota subsp. Halophilus: composition, antifungal activity and cytotoxicity. J Ethnopharmacol 119:129–134

    CAS  Google Scholar 

  • Tchoumbougnang F, Zollo PH, Dagne E et al (2005) In vivo anti-malarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71:20–23

    CAS  Google Scholar 

  • Tepe B, Donmez E, Unlub M et al (2004) Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem 84:519–525

    CAS  Google Scholar 

  • Tohidpour A, Sattari M, Omidbaigi R et al (2010) Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 17:142–145

    CAS  Google Scholar 

  • Tolouee M, Alinezhad S, Saberi R et al (2010) Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. Int J Food Microbiol 139:127–133

    CAS  Google Scholar 

  • Tomaino A, Cimino F, Zimbalatti V et al (2005) Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem 89:549–554

    CAS  Google Scholar 

  • Tripathi R, Mohan H, Kamat JP (2007) Modulation of oxidative damage by natural products. Food Chem 100:81–90

    CAS  Google Scholar 

  • Tsuneki H, Ma EL, Kobayashi S et al (2005) Antiangiogenic activity of β-eudesmol in vitro and in vivo. Eur J Pharmacol 512:105–115

    CAS  Google Scholar 

  • Vukovic-Gacic B, Nikcevic S, Beric-Bjedov T et al (2006) Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem Toxicol 44:1730–1738

    CAS  Google Scholar 

  • Vunda SLL, Sauter IP, Cibulski SP et al (2012) Chemical composition and amoebicidal activity of Croton pallidulus, Croton ericoides, and Croton isabelli (Euphorbiaceae) essential oils. Parasitol Res 1–6

    Google Scholar 

  • Watanbe H, Miyaji C, Makino M (1996) Therapeutic effects of glycyrrhizin in mice infected with LP-BM5 murine retrovirus and mechanisms involved in the prevention of disease progression. Biotherapy 9:209–220

    CAS  Google Scholar 

  • Wendakoon CN, Sakaguchi M (1995) Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J Food Prot 58:280–283

    CAS  Google Scholar 

  • Yoo CB, Han KT, Cho KS et al (2005) Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett 225:41–52

    CAS  Google Scholar 

  • Yoshiki Y, Kudou S, Okubo K (1998) Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci Biotechnol Biochem 62:2291–2299

    CAS  Google Scholar 

  • Zore GB, Thakre AD, Jadhav S et al (2011a) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18:1181–1190

    CAS  Google Scholar 

  • Zore GB, Thakre AD, Rathod V et al (2011b) Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicansdifferentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses 54:99–109

    Google Scholar 

  • Zuzarte M, Maria JG, Carlos C (2011) Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J Med Microbiol 60: 612–618

    CAS  Google Scholar 

  • Zuzarte M, Goncalves MJ, Cruz MT (2012) Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem 135:1505–1510

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankunny Mohan Karuppayil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Raut, J.S., Karuppayil, S.M. (2014). Bioprospecting of Plant Essential Oils for Medicinal Uses. In: Fulekar, M., Pathak, B., Kale, R. (eds) Environment and Sustainable Development. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1166-2_5

Download citation

Publish with us

Policies and ethics