Skip to main content

Neurobiology of Monoaminergic Neurotransmission and Antidepressants

  • Chapter
  • First Online:
Melatonin and Melatonergic Drugs in Clinical Practice

Abstract

Pathophysiological mechanisms underlying depression are complex and are at multiple levels of analysis. But, during the 1960s, monoamine theories of depression flourished, postulating that a fundamental cause of depression was a functional deficit in noradrenergic and serotonergic neurotransmission in certain areas of the brain. These hypotheses were developed based on the fact that certain drugs that lessened depressive symptoms had monoaminergic properties, like blocking the serotonin transporter (5-HTT) or inhibiting MAO enzymes. Thus, any sort of alteration in monoamine functioning, whether in its synthesis, storage, release, or biotransformation, not to mention changes in its reuptake or monoamine receptor sensitivity, was related to the manifestation of characteristic depressive and behavioral symptoms (e.g., mood, alertness, motivation, fatigue, agitation, and psychomotor retardation).

It is generally accepted that a variety of genetic, environmental, and neurobiological factors are implicated in depression. The 5-HTT gene (SLC6A4) and other genes involved in the serotonergic system (polymorphisms on TPH2, 5-HT1A or COMT genes), norepinephrine transporter (NET, SLC6A2), and dopamine transporter (DAT, SLC6A) are candidates for susceptibility to depression. Many antidepressant medications act on that system. This chapter analyzes the validity of the monoamine hypothesis of depression, its intersections with other neurobiological mechanisms, and antidepressants’ influence on such mechanisms. The monoamine hypothesis of depression is critically discussed. Specifically, we wish to add to the body of knowledge about monoamines in the pathophysiology of depression and to suggest other neurobiological aspects that could help improve the treatment of such disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Álamo C, López-Muñoz F. New antidepressant drugs: beyond monoaminergic mechanisms. Curr Pharm Des. 2009;15:1559–62.

    PubMed  Google Scholar 

  2. Álamo C, López-Muñoz F, García-García P. Trastornos del estado de ánimo. In: Consejo General de Colegios Oficiales de Farmacéuticos, editor. Principios de fisiopatología para la atención farmacéutica, Módulo IV. Madrid: CGCOF; 2009. p. 97–138.

    Google Scholar 

  3. Alexander F, Selesnick S. Historia de la Psiquiatría. Barcelona: Ed. Expaxs; 1970.

    Google Scholar 

  4. López-Muñoz F, Alamo C. Historical evolution of the neurotransmission concept. J Neural Transm. 2009;116:515–33.

    PubMed  Google Scholar 

  5. López-Muñoz F, Alamo C, Cuenca E. La “Década de Oro” de la Psicofarmacología (1950–1960): Trascendencia histórica de la introducción clínica de los psicofármacos clásicos. Psiquiatria.com (Electronic Journal). 2000;4(3). http://www.psiquiatria.com/psiquiatria/revista/47/1800/?++interactivo.

  6. López-Muñoz F, Alamo C, Cuenca E. Historia de la Psicofarmacología. In: Vallejo J, Leal C, editors. Tratado de Psiquiatría. Barcelona: Ars Medica; 2005. p. 1709–36.

    Google Scholar 

  7. Willner P, Scheel-Krüger J, Belzung C. The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev. 2012; doi:10.1016/j.neubiorev.2012.12.007. pii:S0149-7634(12)00216-3.

  8. Albert PR, Benkelfat C, Descarries L. The neurobiology of depression—revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci. 2012;367:2378–81.

    CAS  PubMed  Google Scholar 

  9. Álamo C, López-Muñoz F, Armada MJ. Agomelatina: un nuevo enfoque farmacológico en el tratamiento de la depresión con traducción clínica. Psiquiatr Biol. 2008;15:125–39.

    Google Scholar 

  10. Chenu F, El Mansari M, Blier P. Electrophysiological effects of repeated administration of agomelatine on the dopamine, norepinephrine, and serotonin systems in the rat brain. Neuropsychopharmacology. 2013;38:275–84.

    CAS  PubMed  Google Scholar 

  11. Brink CB, Harvey BH, Brand L. Tianeptine: a novel atypical antidepressant that may provide new insights into the biomolecular basis of depression. Recent Pat CNS Drug Discov. 2006;1:29–41.

    CAS  PubMed  Google Scholar 

  12. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hasler G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry. 2010;9:155–61.

    PubMed Central  PubMed  Google Scholar 

  14. Kendler KS, Gatz M, Gardner CO, Pedersen NL. A Swedish national twin study of lifetime major depression. Am J Psychiatry. 2006;163:109–14.

    PubMed  Google Scholar 

  15. Dick DM, Riley B, Kendler KS. Nature and nurture in neuropsychiatric genetics: where do we stand? Dialogues Clin Neurosci. 2010;12:7–23.

    PubMed Central  PubMed  Google Scholar 

  16. Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301:386–9.

    CAS  PubMed  Google Scholar 

  17. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry. 2010;167:509–27.

    PubMed Central  PubMed  Google Scholar 

  18. Tamatam A, Khanum F, Bawa AS. Genetic biomarkers of depression. Indian J Hum Genet. 2012;18:20–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301:2462–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Wray NR, Pergadia ML, Blackwood DHR, et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry. 2012;17:36–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Palazidou E. The neurobiology of depression. Br Med Bull. 2012;101:127–45.

    CAS  PubMed  Google Scholar 

  22. Bagdy G, Juhasz G, Gonda X. A new clinical evidence-based gene-environment interaction model of depression. Neuropsychopharmacol Hung. 2012;14:213–20.

    PubMed  Google Scholar 

  23. Belsky J, Jonassaint C, Pluess M, Stanton M, Brummett B, Williams R. Vulnerability genes or plasticity genes? Mol Psychiatry. 2009;14:746–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kenna GA, Roder-Hanna N, Leggio L, et al. Association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism with psychiatric disorders: review of psychopathology and pharmacotherapy. Pharmacogenics Pers Med. 2012;5:19–35.

    CAS  Google Scholar 

  25. Du L, Bakish D, Hrdina PD. Tryptophan hydroxylase gene 218A/C polymorphism is associated with somatic anxiety in major depressive disorder. J Affect Disord. 2001;65:37–44.

    CAS  PubMed  Google Scholar 

  26. Mann JJ, Currie DM. Stress, genetics and epigenetic effects on the neurobiology of suicidal behavior and depression. Eur Psychiatry. 2010;25:268–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Parsey RV, Oquendo MA, Ogden RT, et al. Altered serotonin 1A binding in major depression: a (carbonyl-C-11) WAY100635 positron emission tomography study. Biol Psychiatry. 2006;59:106–13.

    CAS  PubMed  Google Scholar 

  28. Lebe M, Hasenbring MI, Schmieder K, et al. Association of serotonin-1A and -2A receptor promoter polymorphisms with depressive symptoms, functional recovery, and pain in patients 6 months after lumbar disc surgery. Pain. 2013;154:377–84.

    CAS  PubMed  Google Scholar 

  29. Lucae S, Ising M, Horstmann S, et al. HTR2A gene variation is involved in antidepressant treatment response. Eur Neuropsychopharmacol. 2010;20:65–8.

    CAS  PubMed  Google Scholar 

  30. Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012;379:1045–55.

    PubMed Central  PubMed  Google Scholar 

  31. Haeffel GJ, Getchell M, Koposov RA, Yrigollen CM. Association between polymorphisms in the dopamine transporter gene and depression: evidence for a gene-environment interaction in a sample of juvenile detainees. Psychol Sci. 2008;19:62–9.

    PubMed  Google Scholar 

  32. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012;22:239–58.

    CAS  PubMed  Google Scholar 

  33. Porcelli S, Drago A, Fabbri C, et al. Pharmacogenetics of antidepressant response. J Psychiatry Neurosci. 2011;36:87–113.

    PubMed Central  PubMed  Google Scholar 

  34. Serretti A, Kato M, de Ronchi D. Kinoshita T- meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry. 2007;12:247–57.

    CAS  PubMed  Google Scholar 

  35. Hu XZ, Rush AJ, Charney D, et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry. 2007;64:783–92.

    CAS  PubMed  Google Scholar 

  36. Laje G, Perlis RH, Rush AJ, McMahon FJ. Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv. 2009;60:1446–57.

    PubMed Central  PubMed  Google Scholar 

  37. Rundell JR, Staab JP, Shinozaki G, McAlpine D. Serotonin transporter gene promotor polymorphism (5-HTTLPR) associations with number of psychotropic medication trials in a tertiary care outpatient psychiatric consultation practice. Psychosomatics. 2011;52:147–53.

    PubMed  Google Scholar 

  38. Narasimhan S, Lohoff FW. Pharmacogenetics of antidepressant drugs: current clinical practice and future directions. Pharmacogenomics. 2012;13:441–64.

    CAS  PubMed  Google Scholar 

  39. White KJ, Walline CC, Barker EL. Serotonin transporters: implications for antidepressant drug development. AAPS J. 2005;7:421–33.

    Google Scholar 

  40. Kim H, Lim SW, Kim S, et al. Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA. 2006;296:1609–18.

    CAS  PubMed  Google Scholar 

  41. Uher R, Huezo-Diaz P, Perroud N, et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 2009;9:225–33.

    CAS  PubMed  Google Scholar 

  42. Baffa A, Hohoff C, Baune BT, et al. Norepinephrine and serotonin transporter genes: impact on treatment response in depression. Neuropsychobiology. 2010;62:121–31.

    CAS  PubMed  Google Scholar 

  43. Weizman S, Gonda X, Dome P, Faludi G. Pharmacogenetics of antidepressive drugs: a way towards personalized treatment of major depressive disorder. Neuropsychopharmacol Hung. 2012;14:87–101.

    PubMed  Google Scholar 

  44. Serretti A, Kato M, Kennedy JL. Pharmacogenetic studies in depression: a proposal for methodologic guidelines. Pharmacogenomics J. 2008;8:90–100.

    CAS  PubMed  Google Scholar 

  45. Perlis RH, Fijal B, Adams DH, et al. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol Psychiatry. 2009;65:785–91.

    CAS  PubMed  Google Scholar 

  46. Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet. 1998;103:273–9.

    CAS  PubMed  Google Scholar 

  47. Yu YW, Tsai SJ, Liou YJ, et al. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol. 2006;16:498–503.

    CAS  PubMed  Google Scholar 

  48. Baune BT, Hohoff C, Mortensen L. Serotonin transporter polymorphism (5-HTTLPR) association with melancholic depression: a female specific effect? Depress Anxiety. 2008;25:920–5.

    CAS  PubMed  Google Scholar 

  49. Kato M, Fukuda T, Wakeno M, et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:115–23.

    CAS  PubMed  Google Scholar 

  50. Horstmann S, Binder EB. Pharmacogenomics of antidepressant drugs. Pharmacol Ther. 2009;124:57–73.

    CAS  PubMed  Google Scholar 

  51. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010;15:473–500.

    CAS  PubMed  Google Scholar 

  52. Kato M, Fukuda T, Wakeno M, et al. Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology. 2006;53:186–95.

    CAS  PubMed  Google Scholar 

  53. Zill P, Baghai TC, Engel R, et al. Beta-1-adrenergic receptor gene in major depression: influence on antidepressant treatment response. Am J Med Genet B Neuropsychiatr Genet. 2003;120B:85–9.

    PubMed  Google Scholar 

  54. Garriock HA, Delgado P, Kling MA, et al. Number of risk genotypes is a risk factor for major depressive disorder: a case–control study. Behav Brain Funct. 2006;2:24.

    PubMed Central  PubMed  Google Scholar 

  55. Tansey KE, Guipponi M, Perroud N, et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLOS Med. 2012;9(10):e1001326.

    PubMed Central  PubMed  Google Scholar 

  56. López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009;15:1563–86.

    PubMed  Google Scholar 

  57. Kirsch I, Deacon BJ, Huedo-Medina TB, et al. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008;5:260–8.

    Google Scholar 

  58. Fournier JC, De Rubeis RJ, Hollon SD, et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA. 2010;303:47–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Nutt DJ. Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry. 2008;69(Suppl E1):4–7.

    PubMed  Google Scholar 

  60. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122:509–22.

    CAS  PubMed  Google Scholar 

  61. Cottingham C, Wang Q. Alpha-2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012;36:2214–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.

    CAS  PubMed  Google Scholar 

  63. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12:527–44.

    CAS  PubMed  Google Scholar 

  64. Kern N, Sheldrick AJ, Schmidt FM, Minkwitz J. Neurobiology of depression and novel antidepressant drug targets. Curr Pharm Des. 2012;18:5791–801.

    CAS  PubMed  Google Scholar 

  65. González-Maeso J, Meana JJ. Heterotrimeric G proteins: insights into the neurobiology of mood disorders. Curr Neuropharmacol. 2006;4:127–38.

    PubMed  Google Scholar 

  66. Zhao Z, Zhang HT, Bootzin E, et al. Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Neuropsychopharmacology. 2009;34:1467–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Lin Z, Madras BK. Human genetics and pharmacology of neurotransmitter transporters. Handb Exp Pharmacol. 2006;175:327–71.

    CAS  PubMed  Google Scholar 

  68. Klimek V, Stockmeier C, Overholser J, et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci. 1997;17:8451–8.

    CAS  PubMed  Google Scholar 

  69. Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011;7 Suppl 1:9–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Delgado PL, Moreno FA. Role of norepinephrine in depression. J Clin Psychiatry. 2000;61 Suppl 1:5–12.

    CAS  PubMed  Google Scholar 

  71. Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry. 2007;12:331–59.

    CAS  PubMed  Google Scholar 

  72. Brodie BB, Pletscher AP, Shore PA. Evidence that serotonin has a role in brain function. Science. 1955;122:968.

    CAS  PubMed  Google Scholar 

  73. Udenfriend S, Weissbach H, Bogdanski DF. Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J Biol Chem. 1957;224:803–10.

    CAS  PubMed  Google Scholar 

  74. Carlsson A, Fuxe K, Ungerstedt U. The effect of imipramine on central 5hydroxytryptamine neurons. J Pharm Pharmacol. 1968;20:150–1.

    CAS  PubMed  Google Scholar 

  75. Lapin JP, Oxenkrug GF. Intensification of the central serotonergic processes as a possible determinal of the thymoleptic effect. Lancet. 1969;i:132–6.

    Google Scholar 

  76. Ashcroft GW, Sharman DF. 5-hydroxyindoles in human cerebrospinal fluids. Nature. 1960;186:1050–1.

    CAS  PubMed  Google Scholar 

  77. Asberg M, Thorén P, Träskman L, Bertilsson L, Ringberger V. “Serotonin depression” – a biochemical subgroup within the affective disorders? Science. 1976;1976(191):478–80.

    Google Scholar 

  78. Träskman-Bendz L, Asberg M, Bertilsson L, Thorén P. CSF monoamine metabolites of depressed patients during illness and after recovery. Acta Psychiatr Scand. 1984;69:333–42.

    PubMed  Google Scholar 

  79. Samuelsson M, Jokinen J, Nordström A-L, Nordström P. CSF 5-HIAA, suicide intent and hopelessness in the prediction of early suicide in male high-risk suicide attempters. Acta Psychiatr Scand. 2006;113:44–7.

    CAS  PubMed  Google Scholar 

  80. López-Ibor JJ, Saiz-Ruiz J, Pérez de los Cobos JC. Biological correlations of suicide and aggressivity in major depressions (with melancholia): 5-hydroxyindoleacetic acid and cortisol in cerebral spinal fluid, dexamethasone suppression test and therapeutic response to 5-hydroxytryptophan. Neuropsychobiology. 1985;14:67–74.

    PubMed  Google Scholar 

  81. Sullivan GM, Oquendo MA, Huang Y-Y, Mann JJ. Elevated cerebrospinal fluid 5-hydroxyindoleacetic acid levels in women with comorbid depression and panic disorder. Int J Neuropsychopharmacol. 2006;9:547–56.

    CAS  PubMed  Google Scholar 

  82. Kennedy JS, Gwirtsman HE, Schmidt DE, et al. Serial cerebrospinal fluid tryptophan and 5-hydroxy indoleacetic acid concentrations in healthy human subjects. Life Sci. 2002;71:1703–15.

    CAS  PubMed  Google Scholar 

  83. Altieri YS, Singh E, Sibille Y, Andrews AM. Serotonergic pathways in depression. In: López-Muñoz F, Álamo C, editors. Neurobiology of depression. Boca Raton: Taylor & Francis/CRC Press; 2012. p. 143–70.

    Google Scholar 

  84. Jacobsen JPR, Medvedev IO, Caron MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci. 2012;367:2444–59.

    CAS  PubMed  Google Scholar 

  85. Belmaker RH, Agam G. Major depressive disorders. N Engl J Med. 2008;358:55–68.

    CAS  PubMed  Google Scholar 

  86. Walderhaug E, Magnusson A, Neumeister A, et al. Interactive effects of sex and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biol Psychiatry. 2007;62:593–9.

    CAS  PubMed  Google Scholar 

  87. Oquendo MA, Hastings RS, Huang Y-Y, et al. Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography. Arch Gen Psychiatry. 2007;64:201–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Miller JM, Kinnally EL, Ogden RT, et al. Reported childhood abuse is associated with low serotonin transporter binding in vivo in major depressive disorder. Synapse. 2009;63:565–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Cannon DM, Ichise M, Fromm SJ, et al. Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry. 2006;60:207–17.

    CAS  PubMed  Google Scholar 

  90. Pitchot W, Hansenne M, Pinto E, et al. 5-hydroxytryptamine 1A receptors, major depression, and suicidal behavior. Biol Psychiatry. 2005;58:854–8.

    CAS  PubMed  Google Scholar 

  91. Hirvonen J, Karlsson H, Kajander J, et al. Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. Int J Neuropsychopharmacol. 2008;11:465–76.

    CAS  PubMed  Google Scholar 

  92. Miller JM, Brennan KG, Ogden TR, et al. Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology. 2009;34:2275–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Meltzer CC, Price JC, Mathis CA, et al. Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology. 2004;29:2258–65.

    CAS  PubMed  Google Scholar 

  94. Svenningsson P, Chergui K, Rachleff I, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science. 2006;311:77–80.

    CAS  PubMed  Google Scholar 

  95. Stanley M, Mann JJ. Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet. 1983;i:214–6.

    Google Scholar 

  96. Oquendo MA, Russo SA, Underwood MD, et al. Higher postmortem prefrontal 5-HT2A receptor binding correlates with lifetime aggression in suicide. Biol Psychiatry. 2006;59:235–43.

    CAS  PubMed  Google Scholar 

  97. Gutknecht L, Kriegebaum C, Waider J, et al. Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur Neuropsychopharmacol. 2009;19:266–82.

    CAS  PubMed  Google Scholar 

  98. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.

    CAS  PubMed  Google Scholar 

  99. Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA. Dopaminergic abnormalities in amygdaloid nucleus in major depression: a postmortem study. Biol Psychiatry. 2002;52:740–8.

    CAS  PubMed  Google Scholar 

  100. Stein D. Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry. CNS Spectr. 2008;13:561–5.

    PubMed  Google Scholar 

  101. Tremblay LK, Naranjo CA, Graham SJ, et al. Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry. 2005;62:1228–36.

    PubMed  Google Scholar 

  102. Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate CA. Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depressive disorder. J Clin Psychiatry. 2008;69:946–58.

    PubMed Central  PubMed  Google Scholar 

  103. Sulser F, Vetulani J, Mobley P. Mode of action of antidepressant drugs. Biochem Pharmacol. 1978;27:257–61.

    CAS  PubMed  Google Scholar 

  104. Paykel ES, Fleminger R, Watson JP. Psychiatric side effects of antihypertensive drugs other than reserpine. J Clin Psychopharmacol. 1982;2:14–39.

    CAS  PubMed  Google Scholar 

  105. Stahl S. 5HT1A receptors and pharmacotherapy. Is serotonin receptor down-regulation linked to the mechanism of action of antidepressant drugs? Psychopharmacol Bull. 1994;30:39–43.

    CAS  PubMed  Google Scholar 

  106. Wang Z, Crowe RR, Tanna VL, Winokur G. Alpha 2 adrenergic receptor subtypes in depression: a candidate gene study. J Affect Disord. 1992;25:191–6.

    CAS  PubMed  Google Scholar 

  107. Álamo C, Guerra JA, López-Muñoz F. Psicofármacos antidepresivos. In: Chinchilla A, editor. Tratado de terapéutica psiquiátrica. Madrid: Nature Publishing Group; 2010. p. 41–87.

    Google Scholar 

  108. Blier P, De Montigny C. Current advances and trends in the treatment of depression. Trends Pharm Sci. 1994;15:220–6.

    CAS  PubMed  Google Scholar 

  109. Celada P, Puig M, Amargos-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29:252–65.

    PubMed Central  PubMed  Google Scholar 

  110. Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol. 2009;88:17–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Berendsen HH. Interactions between 5-hydroxytryptamine receptor subtypes: is a disturbed receptor balance contributing to the symptomatology of depression in humans? Pharmacol Ther. 1995;66:17–37.

    CAS  PubMed  Google Scholar 

  112. Bourin M, David DJ, Jolliet P, Gardier A. Mechanism of action of antidepressants and therapeutic perspectives. Therapie. 2002;57:385–96.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco López-Muñoz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

López-Muñoz, F., Álamo, C. (2014). Neurobiology of Monoaminergic Neurotransmission and Antidepressants. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_23

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics