Skip to main content

Computational Models of Cerebellar Long-Term Memory

  • Conference paper
Systems Biology

Our brain is capable of learning new things while maintaining old memory. Retention of information requires stability, and new learning requires plasticity. As a memory device, neurons have to meet these contradictory requirements (the “stability versus plasticity dilemma” [1]), but stochastic noise makes this duty still more difficult. The dendritic spine, the key unit of neuronal information processing, is very small (̃1 μm or less in diameter) and contains only a limited number of each molecular species. For instance, the number of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPARs) in a parallel fiber (PF)—Purkinje cell (PC) synapse is as small as 4 to 73 [2]. In such a minute environment, stochastic fluctuations come into play and, affect the signaling pathways underlying memory formation and maintenance. How do neurons handle the stability versus plasticity dilemma without being overwhelmed by the noise? In this chapter, we address this issue by reviewing several theoretical studies of cerebellar long-term depression (LTD) and simulating simple models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham WC, Robins A (2005) Memory retention: the synaptic stability versus plasticity dilemma. Trends Neurosci 28:73–78

    Article  PubMed  CAS  Google Scholar 

  2. Masugi-Tokita M, Tarusawa E, Watanabe M, Molnar E, Fujimoto K, Shigemoto R (2007) Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. J Neurosci 27:2135–2144

    Article  PubMed  CAS  Google Scholar 

  3. Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  4. Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176

    PubMed  CAS  Google Scholar 

  5. Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  6. Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  7. Ito M (2002) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896–902

    Article  PubMed  CAS  Google Scholar 

  8. Hartell NA (2002) Parallel fiber plasticity. Cerebellum 1:3–18

    Article  PubMed  CAS  Google Scholar 

  9. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  10. Jörntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cere-bellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238

    Article  PubMed  Google Scholar 

  11. Iino M (2006) Ca2+-dependent inositol 1,4,5-trisphosphate and nitric oxide signaling in cere-bellar neurons. J Pharmacol Sci 100:538–544

    Article  PubMed  CAS  Google Scholar 

  12. Ferrell JE Jr, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–898

    Article  PubMed  CAS  Google Scholar 

  13. Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693–5702

    PubMed  CAS  Google Scholar 

  14. Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961

    Article  PubMed  CAS  Google Scholar 

  15. Ogasawara H, Doi T, Kawato M (2008) Systems biology perspectives on cerebellar long-term depression. NeuroSignals 16:300–317

    Article  PubMed  CAS  Google Scholar 

  16. Sarkisov DV, Wang SS (2008) Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 28:133–142

    Article  PubMed  CAS  Google Scholar 

  17. Ogasawara H (2008) The calcium kinetics and inositol trisphosphate receptor properties shape the asymmetric timing window of coincidence detection. J. Neurosci 28:4293–4294

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GC, Kawato M, Augustine GJ (2007) Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 54:787–800

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka K, Augustine GJ (2008) A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 59:608–620

    Article  PubMed  CAS  Google Scholar 

  20. Ramakrishnan N, Bhalla US (2008) Memory switches in chemical reaction space. PLoS Comput Biol 4:e1000122

    Article  PubMed  Google Scholar 

  21. Kawato M (2008) From ‘understanding the brain by creating the brain’ towards manipulative neuroscience. Philos Trans R Soc Lond B Biol Sci 363:2201–2214

    Article  PubMed  Google Scholar 

  22. Sacktor TC (2008) PKMζ, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169:27–40

    Article  PubMed  CAS  Google Scholar 

  23. Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKMζ. Science 317:951–953

    Article  PubMed  CAS  Google Scholar 

  24. Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC (2003) Protein kinase Mζ synthesis from a brain mRNA encoding an independent protein kinase Cζ catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 278:40305–40316

    Article  PubMed  CAS  Google Scholar 

  25. Oster H, Eichele G, Leitges M (2004) Differential expression of atypical PKCs in the adult mouse brain. Brain Res Mol Brain Res 127:79–88

    Article  PubMed  CAS  Google Scholar 

  26. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  PubMed  CAS  Google Scholar 

  27. Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentia-tion in alpha-calcium-calmodulin kinase II mutant mice. Science 257:201–206

    Article  PubMed  CAS  Google Scholar 

  28. Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, De Zeeuw CI, Elgersma Y (2006) αCaMKII Is essential for cerebellar LTD and motor learning. Neuron 51:835–843

    Article  PubMed  CAS  Google Scholar 

  29. Goldbeter A, Koshland DE Jr (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 78:6840–6844

    Article  PubMed  CAS  Google Scholar 

  30. Ferrell JE Jr (1999) Building a cellular switch: more lessons from a good egg. Bioessays 21:866–870

    Article  PubMed  Google Scholar 

  31. Shibuki K, Kimura S (1997) Dynamic properties of nitric oxide release from parallel fibres in rat cerebellar slices. J Physiol 498(pt 2):443–452

    PubMed  CAS  Google Scholar 

  32. Lev-Ram V, Wong ST, Storm DR, Tsien RY (2002) A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 99:8389–8393

    Article  PubMed  CAS  Google Scholar 

  33. Kakegawa W, Yuzaki M (2005) A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci USA 102:17846–17851

    Article  PubMed  CAS  Google Scholar 

  34. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  35. Brandman O, Ferrell JE Jr, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310:496–498

    Article  PubMed  CAS  Google Scholar 

  36. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Ogasawara, H., Kawato, M. (2009). Computational Models of Cerebellar Long-Term Memory. In: Nakanishi, S., Kageyama, R., Watanabe, D. (eds) Systems Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87704-2_18

Download citation

Publish with us

Policies and ethics