Skip to main content

Three-Way Classification of Hypertension: Gene Hypertension, Environment Hypertension, and Disease Hypertension

  • Chapter
Essential Hypertension 2

Summary

Bright described in 1827 [1] a patient in whom urine protein was associated with edema and hypertrophy of the heart, which greatly progressed the research of renal hypertension. In 1872, Gull and Sutton [2] demonstrated arterio-capillary fibrosis in patients with hypertension and separated the hypertensive disease from kidney disease. Frank designated in 1911 [3] this hypertensive disease as “essentielle Hypertonie”, which has been translated into English as essential hypertension and recognized as an arterial disease. In 1914, Volhard and Fahr [4] classified hypertension quantitatively into benign and malignant depending on the severity of hypertension. Pickering in 1955 [5] qualitatively differentiated hypertension into essential hypertension and secondary hypertension, which is a two class classification. Essential hypertension was characterized by high blood pressure and hypertensive cardiovascular hypertrophy of the heart and arteries. Secondary hypertension was defined as hypertension occuring as the prominent phenomenon of a disease. Renovascular hypertension, primary aldosteronism hypertension, pheochromocytoma hypertension, and others are considered as secondary hypertension. Aoki proposed in 1985 [6], an etiological classification of hypertension, the following three-way classification: (1) gene (essential) hypertension, (2) environment (accessory gene) hypertension, and (3) disease (non-gene) hypertension. Gene hypertension, inherited through the major hypertension gene, may correspond to Frank’s essential hypertension. Environment hypertension is characterized by the development of hypertension due to an interaction of environmental factors on an accessory hypertension genes. Salt-sensitive hypertension, obesity-sensitive hypertension, alcohol hypertension, and others of environment hypertension are considered. Disease hypertension, defined as high blood pressure resulting from a disease, corresponds to Pickering’s secondary hypertension. This three-way classification according to hypertension gene, applicable to both experimental and clinical cases of hypertensive disease, may open the door to a wide range of further research on the mechanisms, therapy, and prevention of hypertensive diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bright R (1827) Reports of medical cases, selected with a view of illustrating the symptoms and cure of diseases by a reference to morbid anatomy. Longman, London.

    Google Scholar 

  2. Gull WW, Sutton HG (1872) On the pathology of the morbid state commonly called chronic Bright’s disease with contracted kidney: Arterio-capillary fibrosis. Med Chir Trans 55: 273–326.

    PubMed  CAS  Google Scholar 

  3. Frank E (1911) Bestehen Beziehungen zwischen chromaffinem System und der chronischen Hypertonie des Menschen? Ein kritischer Beitrag zu der Lehre von der physio-pathologischen Bedeutung des Adrenalines. Dtsch Arch klin Med 103: 397–412.

    Google Scholar 

  4. Volhard F, Fahr T (1914) Die Brightsche Nierenkrankheit. Klinik, Pathologie und Atlas. Springer, Berlin.

    Google Scholar 

  5. Pickering GW (1955) The classification of hypertension. In: High blood pressure. Grune and Stratton, New York, J and A Churchill, London, pp 122–130.

    Google Scholar 

  6. Aoki K (1985) Essential hypertension and secondary hypertension in humans and rats. Asian Med J 28: 529–548.

    CAS  Google Scholar 

  7. Tiegerstedt R, Bergman PG (1898) Niere and Kreislauf. Scand Arch Physiol 8: 223–240.

    Google Scholar 

  8. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. J Exp Med 59: 347–379.

    Article  PubMed  CAS  Google Scholar 

  9. Pickering GW, Prinzmetal M (1938) Some observations on renin, a pressure substance contained in normal kidney, together with a method for its biological assay. Clin Sci 3: 211–227.

    CAS  Google Scholar 

  10. Huchard H (1889) Maladies du coeur et des vaisseaux. Doin, Paris.

    Google Scholar 

  11. von Bach S (1893) Ueber latente Arteriosclerose und deren Beziehung zu Fettleibigkeit, Herzerkrankungen und anderen Begleiterscheinungen. Urban & Schwartzenberg, Vienna.

    Google Scholar 

  12. Allbutt TC (1895) Diseases of the arteries, including angina pectoris. Macmillan, London.

    Google Scholar 

  13. Pickering GW (1961) The aetiology of essential hypertension, the genetic factor. In: The nature of essential hypertension. J and A Churchill, London, pp 22–57.

    Google Scholar 

  14. Aoki K (1986) Etiological classification of hypertension: Essential hypertension, environment hypertension, and disease hypertension. In: Aoki K (ed) Essential hypertension, calcium mechanisms and treatment. Springer, Tokyo Berlin Herdelberg New York London Paris, pp 11–24.

    Google Scholar 

  15. Aoki K (1988) The three-way classification of hypertension: Essential hypertension, environment hypertension, and disease hypertension. In: Aoki K, Frohlich ED (eds) Calcium in essential hypertension. Academic Press, Tokyo San Diego New York London, pp 9–36.

    Google Scholar 

  16. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS (1986) Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8 (Suppl II): 127–134.

    Google Scholar 

  17. Kawasaki T, Delea CS, Bartter FC, Smith H (1978) The effect of high sodium and low sodium intake on arterial pressures and other related variables in humans subjects with ideopathic hypertension. Am J Med 64: 193–198.

    Article  PubMed  CAS  Google Scholar 

  18. Reisin E (1983) Obesity and hypertension: Effect of weight reduction. In: Robertson JIS (ed) Clinical aspects of essential hypertension. Handbook of hypertension, vol 1. Elsevier, Amsterdam, pp 30–43.

    Google Scholar 

  19. Reisin E, Abel R, Modern M, Silverberg DS, Eliahou ME, Modan B (1978) Effect of weight loss without salt reduction on the reduction of blood pressure in overweight hypertensive patients. N Engl J Med 298: 1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Reisin E, Frohlich ED, Messerli FH, Dreslinski GR, Dunn FG, Jones MM, Batson HM Jr. (1983) Cardiovascular changes after weight reduction in obesity hypertension. Ann Intern Med 98: 315–319.

    PubMed  CAS  Google Scholar 

  21. Weitz W (1923) Zur Atiologie der genuinen order vasculären Hypertonie. Z Klin Med 96: 151–181.

    Google Scholar 

  22. Hamilton M, Pickering GW, Roberts JAF, Sowry GSC (1954) The aetiology of essential hypertension. 1. The arterial pressure in the general population. Clin Sci 13: 11–35.

    PubMed  CAS  Google Scholar 

  23. Hamilton M, Pickering GW, Roberts JAF, Sowry GSC (1954) The aetiology of essential hypertension. 2. Scores for arterial blood pressures adjusted for differences in age and sex. Clin Sci 13: 37–49.

    PubMed  CAS  Google Scholar 

  24. Hamilton M, Pickering GW, Roberts JAF, Sowry GSC (1954) The aetiology of essential hypertension. 4. The role of inheritance. Clin Sci 13: 273–304.

    PubMed  CAS  Google Scholar 

  25. Oldham PD, Pickering GW, Roberts JAF, Sowry GSC (1960) The nature of essential hypertension Lancet I: 1085–1093.

    Article  Google Scholar 

  26. Pickering WG (1960) Inheritance of high blood pressure. In: Bock KD, Cottier PT (eds) Essential hypertension. Springer, Berlin, pp 30–38.

    Google Scholar 

  27. Platt R (1947) Heredity in hypertension. Quart J Med NS 16: 111.

    CAS  Google Scholar 

  28. Platt R (1959) The nature of essential hypertension Lancet II: 55–57.

    Article  Google Scholar 

  29. Platt R (1959) The nature of essential hypertension Lancet I: 1189–1190.

    Google Scholar 

  30. Platt R (1960) The nature of essential hypertension. In: Bock KD, Cottier PT (eds) Essential hypertension. Springer, Berlin, pp 39–44.

    Google Scholar 

  31. Thomson KJ (1950) Proceedings of the 38th annual meeting of the medical section of the american life convention.

    Google Scholar 

  32. Cruz-Coke R (1959) The nature of essential hypertension Lancet II: 853.

    Article  Google Scholar 

  33. Morrison SL, Morris JN (1959) Epidemiological observations on high blood-pressure without evident cause Lancet II: 864–870.

    Article  Google Scholar 

  34. Aoki K (1986) Calcium membrane theory of essential hypertension. In: Aoki K (ed), Essential hypertension, calcium mechanisms and treatment. Springer, Tokyo Berlin Heidelberg New York London Paris, pp 223–242.

    Google Scholar 

  35. Aoki K (1988) The calcium membrane theory of essential hypertension. In: Aoki K, Frohlich ED (eds) Calcium in essential hypertension. Academic, Tokyo San Diego New York London, pp 623–653.

    Google Scholar 

  36. Murphy EA (1973) Genetics in hypertension, a perspective Circ Res 32; 33 (Suppl I): I-129–137.

    Google Scholar 

  37. Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182: 727–728.

    Article  PubMed  CAS  Google Scholar 

  38. Phelan EL, Smirk FH (1960) Cardiac hypertrophy in genetically hypertensive rats. J Pathol Bacteriol 80: 445–448.

    Article  PubMed  CAS  Google Scholar 

  39. Jones DR, Dowd DA (1970) Development of elevated blood pressure in young genetically hypertensive rats. Life Sciences 9(I):247–250.

    Article  PubMed  CAS  Google Scholar 

  40. Simpson FO, Phelan EL (1984) Hypertension in the genetically hypertensive strain. In: De Jong W (ed) Experimental and genetic models of hypertension. Handbook of Hypertension, vol 4. Elsevier, Amsterdam, pp 200–223.

    Google Scholar 

  41. Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27: 282–293.

    Article  PubMed  CAS  Google Scholar 

  42. Aoki K (1986) Discovery of the spontaneously hypertensive rats. In: Aoki K (ed), Essential hypertension, calcium mechanisms and treatment. Springer, Tokyo Berlin Heidelberg New York London Paris, pp 3–7.

    Google Scholar 

  43. Aoki K, Yamori Y, Ooshima A, Okamoto K (1972) Effects of high or low sodium intake in spontaneously hypertensive rats. Jpn Circ J 36: 539–545.

    Article  PubMed  CAS  Google Scholar 

  44. Nagaoka A, Iwatsuka H, Suzuki Z, Okamoto K (1976) Genetic predisposition to stroke in spontaneously hypertensive rats. Am J Physiol 230: 1354–1359.

    PubMed  CAS  Google Scholar 

  45. Schlager G (1974) Selection for blood pressure levels in mice. Genetics 76: 537–549.

    PubMed  CAS  Google Scholar 

  46. Schlager G, Weibust RS (1967) Genetic control of blood pressure in mice. Genetics 55: 497–506.

    PubMed  CAS  Google Scholar 

  47. Alexander N, Hinshaw LB, Drury DR (1954) Development of a strain of spontaneously hypertensive rabbits. Proc Soc Exp Biol Med 86: 855–858.

    PubMed  CAS  Google Scholar 

  48. Fox RR, Schlager G, Laird CG (1969) Blood pressure in thirteen strain of rabbits. J Hered 60: 312–314.

    PubMed  CAS  Google Scholar 

  49. Rapp JP (1983) Genetics of experimental and human hypertension. In: Genest J, Kuchel O, Hamet P, and Cantin M (eds), Hypertension, pathophysiology and treatment, 2nd edn. McGraw-Hill, New York, pp 582–598.

    Google Scholar 

  50. Louis WJ, Tabei R, Sjoerdsma A, Spectors (1969) Inheritance of high blood-pressure in the spontaneously hypertensive rats Lancet I: 1035–1036.

    Article  Google Scholar 

  51. Tanase H, Suzuki Y, Ooshima A, Yamori Y, Okamoto K (1970) Genetic analysis of blood pressure in spontaneously hypertensive rats. Jpn Circ J 34: 1197–1212.

    Article  PubMed  CAS  Google Scholar 

  52. Tanase J (1979) Genetic control of blood pressure in spontaneously hypertenive rats (SHR). Exp Anim 28: 519–530 (in Japanese).

    CAS  Google Scholar 

  53. Shibata S, Kurahashi K, Kuchii M (1973) A possible etiology of contractility impairment of vascular smooth from spontaneously hypertensive rats. J Pharmacol Exp Ther 185: 406–417.

    PubMed  CAS  Google Scholar 

  54. Dahl LK, Heine M, Tassinari L (1962) Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptibility of experimental hypertension. J Exp Med 115: 1173–1190.

    Article  PubMed  CAS  Google Scholar 

  55. Hatch FT, Wertheim AR, Eurman GH, Watkin DM, Froeb HF, Epstein HA (1954) Effects of diet in essential hypertension. Am J Med 17: 499–513.

    Article  PubMed  CAS  Google Scholar 

  56. Tobian L (1974) Hypertension and the kidney. Arch Intern Med 133: 959–967.

    Article  PubMed  Google Scholar 

  57. Miall WE, Oldham PD (1963) The hereditary factor in arterial blood pressure. Br Med J I-1(No 5323) 75–80.

    Article  Google Scholar 

  58. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts FH (1978) Weight and blood pressure findings in hypertension screening of 1 million Americans. J Am Med Assoc 240: 1607–1610.

    Article  CAS  Google Scholar 

  59. Memorandum from a WHO/ISH Meeting (1986) 1986 guidelines for the treatment of mild hypertension. J Hypertension 4: 383–386.

    Article  Google Scholar 

  60. Puddey IB, Beilin LJ, Vandongen R, Rogers P (1985) Evidence for a direct effect of alcohol on blood pressure in normotensive men — a randomised controlled trial. Hypertension 7: 703–713.

    Google Scholar 

  61. Puddey IB, Beilin LJ, Vandongen R (1987) Regular alcohol use raises blood pressure in treated hypertensive subjects: A randomised controlled trial Lancet I: 647–651.

    Article  Google Scholar 

  62. Saunders JB, Beevers DJ, Paton A (1981) Alcohol-induced hypertension Lancet II: 653–656.

    Article  Google Scholar 

  63. Arkwright PD, Beilin LJ, Vandongen RV, Rowse IA, Labor C (1982) The pressor effect of moderate alcohol consumption in man: A search for mechanisms. Circulation 66: 515–519.

    Article  PubMed  CAS  Google Scholar 

  64. Beilin JF, Arkwright PD (1983) Alcohol and hypertension. In: Robertson JIS (ed), Clinical aspects of essential hypertension. Handbook of Hypertension, vol 1. Elsevier, Amsterdam, pp 44–63.

    Google Scholar 

  65. Myrhed M (1974) Alcohol consumption in relation to factors associated with ischemic heart disease: A co-twin control study. Acta Med Scand (Suppl) 567: 1–93.

    CAS  Google Scholar 

  66. Cyon E, Ludwig C (1886) Die Reflexe eines der sensiblen Nerven des Herzens auf die motorischen der Blutgefasse. Verh Kgl Ges Wiss, Leipziar, 18: 307–328.

    Google Scholar 

  67. Pickering TG, Sleight P (1977) Baroreceptors and hypertension. In: De Jong W, Provoost AP, Shapiro AP (eds) Hypertension and brain mechanisms. Elsevier, Amsterdam, pp 43–60.

    Chapter  Google Scholar 

  68. Heymans C, Neil E (1958) Reflexogenic areas of the cardiovascular system, Churchill, London.

    Google Scholar 

  69. Masson GMC, Aoki K, Page IH (1966) Effects of sinoaortic denervation on renal and adrenal hypertension. Am J Physiol 211: 99–104.

    PubMed  CAS  Google Scholar 

  70. Lowe RD (1961) Ischaemia of the brain as a cause of chronic hypertension in man. Clin Sci 21: 403–407.

    PubMed  CAS  Google Scholar 

  71. De Jong W, Zandberg P, Palkovists M, Bohus B (1977) Acute and chronic hypertension after lesions and transections of the rat brain stem. In: De Jong W, Provoost AP, Shapiro AP (eds) Hypertension and brain mechanisms. Elsevier, Amsterdam, pp 189–197.

    Chapter  Google Scholar 

  72. Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the cat. Circ Res 32: 584–593.

    PubMed  CAS  Google Scholar 

  73. Magnus O, Koster M, Vander Drift JHA (1977) Cerebral mechanisms and neurogenic hypertension in man, with special reference to baroreceptor control. In: De Jong, Provoost AP, Shapiro AP (eds) Hypertension and brain mechanisms. Elsevier, Amsterdam, pp 199–218.

    Chapter  Google Scholar 

  74. Skelton FR (1955) Development of hypertension and cardiovascular-renal lesions during adrenal regeneration in the rat. Proc Soc Exp Biol Med 90: 342–346.

    PubMed  CAS  Google Scholar 

  75. Floulkes R, Gardiner SM, Bennett T (1987) Adrenal regeneration in the rat. J Hypertens 5: 637–644.

    Article  Google Scholar 

  76. Selye H, Hell CE, Rowley EM (1943) Malignant hypertension produced by treatment with desoxycorticosterone acetate and sodium chloride. Can Med Assoc J 49: 88–92.

    PubMed  CAS  Google Scholar 

  77. Conn JW (1955) Primary aldosteronism. J Lab Clin Med 45: 661–664.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Aoki, K. (1989). Three-Way Classification of Hypertension: Gene Hypertension, Environment Hypertension, and Disease Hypertension. In: Aoki, K. (eds) Essential Hypertension 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68090-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68090-1_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68092-5

  • Online ISBN: 978-4-431-68090-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics