Skip to main content

Pressure-Flow Relationships of the Coronary Arteries

  • Chapter
Coronary Circulation

Summary

During a long diastole, coronary flow decreases as pressure decreases, and zero flow may be about 40–50 mmHg during autoregulation and about 10–20 mmHg when vessels are maximally dilated. These high zero-flow pressures have been used as evidence for diastolic intramyocardial waterfalls, but other explanations are possible. The high zero-flow pressures are partly due to the capacitance of the extramural coronary arteries. When capacitive effects are eliminated by steady-state, partial coronary occlusions, high zero-flow pressures may be due in part to collateral flow from other branches. Even in the absence of such causes of high zero-flow pressures, those pressures reflect only the last portion of muscle to be perfused, and zero-flow pressures are probably higher elsewhere in the myocardium. Alternative explanations for the pressure-flow behavior emphasize the large intramyocardial blood volume with its long time constants; according to this hypothesis, the zero-flow pressures in the extramural arteries represent the input pressures to the intramyocardial compartment. In the beating heart, it is not possible to reach equilibrium in all the vessels in one cycle, and not yet possible to determine if indeed there are intramyocardial waterfalls in diastole. In systole, recent studies have shown that blood is pumped retrogradely from the subendocardium to the subepicardium, which thus manifests forward systolic flow, even though little or no blood enters the myocardium in systole from the extramural coronary arteries. Therefore, in systole there is no evidence for typical waterfalls, but more evidence in favor of regional changes in intramyocardial compliance to explain coronary pressure-flow relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellamy RF (1978) Diastolic coronary pressure-flow relations in the dog. Circ Res 43: 92–101

    PubMed  CAS  Google Scholar 

  2. Rouleau JR, White M (1985) Effects of coronary sinus pressure elevation on coronary blood flow distribution in dogs with normal preload. Can J Physiol Pharmacol 63: 787–797

    Article  PubMed  CAS  Google Scholar 

  3. Satoh S, Maruyama Y, Watanabe J, Keitoku M, Hangai K, Takishima T (1987) Comparison of zero-flow pressure (Pf = 0) in diastolic coronary pressure-flow relationship with diastolic pressures in outer (IMPo) and inner (IMPi) myocardial layers. Circulation 76 (Suppl IV): IV , 489

    Google Scholar 

  4. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249 (Heart Circ Physiol 18): H1216 - H1223

    PubMed  CAS  Google Scholar 

  5. Eng C, Jentzer JH, Kirk ES (1982) The effects of the coronary capacitance on the interpretation of diastolic pressure-flow relationships. Circ Res 50: 334–341

    PubMed  CAS  Google Scholar 

  6. Kirkeeide R, Puschmann S, Schaper W (1981) Diastolic coronary pressure-flow relationships investigated by induced long-wave pressure oscillations. Basic Res Cardiol 76: 564–569

    Article  PubMed  CAS  Google Scholar 

  7. Kajiya F, Tsujioka K, Ogasawara Y, Wada Y, Hiramatsu O, Goto M, Nakai M, Tadaoka S, Matsuoka S, Sha Y (1988) Effect of packed cell volume on diastolic coronary artery pressure-flow relations in the dog. Cardiovasc Res 22: 545–554

    Article  PubMed  CAS  Google Scholar 

  8. Klocke FJ, Mates RE, Canty JM Jr, Ellis AK (1985) Coronary pressure-flow relationships. Controversial issues and probable implications. Circ Res 56: 309–323

    Google Scholar 

  9. Canty JM Jr, Klocke FJ, Mates RE (1987) Characterization of capacitance-free pressure-flow relations during single diastoles in dogs using an RC model with pressure-dependent parameters. Circ Res 60: 273–282

    PubMed  Google Scholar 

  10. Chilian WM, Marcus ML (1984) Coronary venous outflow persists after cessation of coronary arterial inflow. Am J Physiol 247 (Heart Circ Physiol 16): H984 - H990

    PubMed  CAS  Google Scholar 

  11. Spaan JAE (1985) Coronary diastolic pressure-flow relations and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 56: 293–309

    PubMed  CAS  Google Scholar 

  12. Ashikawa K, Kanatsuka H, Suzuki T, Takishima T (1986) Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 59: 704–711

    PubMed  CAS  Google Scholar 

  13. Chadwick RS, Tedgui A, Michel JB, Ohayon J, Levy B (1988) A theoretical model for myocardial blood flow. In: Brun P, Chadwick RS, Levy BI (eds) Cardiovascular dynamics and models. Les Editions INSERM, Paris, pp 77–90

    Google Scholar 

  14. Oddou C, Samaké G, Pelle G (1987) Coronary microvessels lumen deformation. Automedica 9: 54

    Google Scholar 

  15. Messina LM, Hanley FL, Uhlig PN, Baer RW, Grattan MT, Hoffman JIE (1985) Effects of pressure gradients between branches of the left coronary artery on the pressure axis intercept and the shape of steady state circumflex pressure-flow relations in dogs. Circ Res 56: 11–19

    PubMed  CAS  Google Scholar 

  16. Pantely GA, Ladley HD, Bristow JD (1984) Low zero-flow pressure and minimal capacitance effect on diastolic coronary artery pressure-flow relations during maximal vasodilation in swine. Circulation 70: 485–494

    Article  PubMed  CAS  Google Scholar 

  17. Satoh S, Watanabe J, Keitoku M, Itoh N, Maruyama Y, Takishima T (1988) Influences of pressure surrounding the heart and intracardiac pressure on the diastolic coronary pressure-flow relation in the excised canine heart. Circ Res 63: 788–797

    PubMed  CAS  Google Scholar 

  18. Scharf SM, Bromberger-Barnea B, Permutt S (1971) Distribution of coronary venous flow. J Appl Physiol 30: 657–662

    PubMed  CAS  Google Scholar 

  19. Uhlig PN, Baer RW, Vlahakes GJ, Hanley FL, Messina LM, Hoffman JIE (1984) Arterial and venous coronary pressure-flow relations in anesthetized dogs. Evidence for a vascular waterfall in epicardial coronary veins. Circ Res 55: 238–248

    PubMed  CAS  Google Scholar 

  20. Pantely GA, Bristow JD, Ladley HD, Anselone CG (1988) Effect of coronary sinus occlusion on flow, resistance, and zero flow pressure during maximum vasodilatation in swine. Cardiovasc Res 22: 79–86

    Article  PubMed  CAS  Google Scholar 

  21. Aldea G, Hoffman JIE, Husseini W, Mori H (1987) Determinants of regional myocardial blood flow. In: Brun P, Chadwick RS, Levy BI (eds) Cardiovascular dynamics and models; Proceedings of NIH-INSERM Workshops. Les Editions INSERM, Paris, pp 44–47

    Google Scholar 

  22. Bellamy RF, Lowensohn HS, Ehrlich W, Baer RW (1980) Effect of coronary sinus occlusion on coronary pressure-flow relations. Am J Physiol 239 (Heart Circ Physiol 8): H57 - H64

    PubMed  CAS  Google Scholar 

  23. Hanley FL, Messina LM, Grattan MT, Hoffman JIE (1984) The effect of coronary inflow pressure on coronary vascular resistance in the isolated dog heart. Circ Res 54: 760–772

    PubMed  CAS  Google Scholar 

  24. Klassen GA, Armour JA (1983) Canine coronary venous pressures: responses to positive inotropism and vasodilation. Can J Physiol Pharmacol 61: 213–221

    Article  PubMed  CAS  Google Scholar 

  25. Klocke FJ, Mates RE, Canty JM Jr, Sekovski B, Gunawardane C, Baello EB, Hajduczok ZD (1986) Tone-dependent vascular waterfall behavior during forward coronary flow. Circulation 74 (Suppl II): 87

    Google Scholar 

  26. Spaan, JAE, Breuls NPW, Laird, JD (1981) Diastolic-systolic flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49: 584–593

    PubMed  CAS  Google Scholar 

  27. Bruinsma P, Arts T, Dankelman J, Spaan JAE (1988) Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 83: 510–524

    Article  PubMed  CAS  Google Scholar 

  28. Klocke FJ, Weinstein IR, Klocke JF, Ellis AK, Kraus DR, Mates RE, Canty JM, Anbar RD, Romanowski RR, Wallmeyer KW, Edit MP (1981) Zero-flow pressures and pressure-flow relationships during single long diastoles in the canine coronary bed before and during maximal vasodilation: Limited influence of capacitive effects. J Clin Invest 68: 970–980

    Article  PubMed  CAS  Google Scholar 

  29. Spaan JAE (1979) Does coronary resistance change only during systole: Circ Res 45: 838–839

    PubMed  CAS  Google Scholar 

  30. Jan KM, Chien S (1977) Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol 233 (Heart Circ Physiol 2): H106 - H113

    PubMed  CAS  Google Scholar 

  31. Baer RW, Vlahakes GJ, Uhlig PN, Hoffman JIE (1987) Maximal myocardial oxygen transport during anemia and polycythemia in dogs. Am J Physiol 252: H1086 - H1095

    PubMed  CAS  Google Scholar 

  32. Van Dijk LC, Krams R, Sipkema P, Westerhof N (1988) Changes in coronary pressure-flow relation after transition from blood to Tyrode perfusion. Am J Physiol 255 (Heart Circ Physiol 24): H476 - H482

    PubMed  Google Scholar 

  33. Ellis A, Klocke FJ (1980) Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 46: 68–77

    PubMed  CAS  Google Scholar 

  34. Downey JM, Kirk ES (1975) Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36: 753–760

    PubMed  CAS  Google Scholar 

  35. Chilian WM, Marcus ML (1982) Phasic coronary flow velocity in intramural and epicardial coronary arteries. Cire Res 50: 775–781

    CAS  Google Scholar 

  36. Tillmanns H, Ikeda S, Hansen H, Sarma JSM, Fauvel J, Bing RI (1974) Micro-circulation in the ventricle of the dog and turtle. Circ Res 34: 561–569

    PubMed  CAS  Google Scholar 

  37. Flynn AE, Coggins DL, Aldea GS, Austin RE, Goto M, Husseini W, Hoffman JIE (1989) Ventricular contraction increases subepicardial blood flow: evidence for a deep myocardial pump. FASEB J 3: A1305

    Google Scholar 

  38. Bellamy RF, Lowensohn HS (1980) Effect of systole on coronary pressure-flow relations in the right ventricle of the dog. Am J Physiol 238 (Heart Circ Physiol 7): H481 - H486

    PubMed  CAS  Google Scholar 

  39. Baird RI, Goldbach MM, de la Rocha A (1972) Intramyocardial pressure: the persistence of its transmural gradient in the empty heart and its relationship to myocardial oxygen consumption. J Thorac Cardiovasc Surg 64: 635–646

    PubMed  CAS  Google Scholar 

  40. Krams R, Sipkema P, Westerhof N (1989) Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257: H1471 - H1479

    PubMed  CAS  Google Scholar 

  41. Ducas J, Schick U, Girling L, Prewitt RM (1988) Effects of left atrial pressure on pulmonary vascular pressure-flow relationships. Am J Physiol 255 (Heart Circ Physiol 24): H19 - H25

    PubMed  CAS  Google Scholar 

  42. Sipkema P, Westerhof N (1989) Mechanics of a thin walled collapsible microtube. Ann Biomed Eng 17: 203–217

    Article  PubMed  CAS  Google Scholar 

  43. Westerhof N, Braakman R, Sipkema P (1988) Small vessel compliance and peripheral pressure-flow relations. Proceedings of the 9th international conference and satellite symposium, The Cardiovascular System Dynamics Society 27–30, Halifax, Nova Scotia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Hoffman, J.I.E. (1990). Pressure-Flow Relationships of the Coronary Arteries. In: Kajiya, F., Klassen, G.A., Spaan, J.A.E., Hoffman, J.I.E. (eds) Coronary Circulation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68087-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68087-1_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68089-5

  • Online ISBN: 978-4-431-68087-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics