Skip to main content

Cardiac Oxygen Costs of Contractility (Emax) and Mechanical Energy (PVA): New Key Concepts in Cardiac Energetics

  • Chapter
Recent Progress in Failing Heart Syndrome

Summary

Experimental studies on cardiac mechanoenergetics performed over the last decade in our laboratory are reviewed and the new concepts obtained from them are summarized. We have proposed that the contractile state of the ventricle can be quantified by the end-systolic ventricular maximum volume elastance (Emax) and that the total mechanical energy of ventricular contraction can be quantified by the systolic pressure-volume area (PVA). Emax is the slope of a linearized end-systolic pressure-volume relation and PVA is the area circumscribed by the end-systolic and end-disatolic pressure-volume relation curves and the systolic pressure-volume trajectory in the ventricular pressure-volume diagram.

We have shown that PVA correlates linearly with ventricular oxygen consumption (Vo2) regardless of ventricular loading conditions at a stable Emax and that the load-independent Vo2-PVA relation is shifted up or down in a parallel manner with enhancement or depression of Emax by various inotropic interventions. These experimental findings can be described by the empirical equations Vo2 = aPVA + b, and b = cEmax + d. Coefficient a is the oxygen cost of PVA or mechanical energy, aPVA is the PVA-dependent Vo2, constant b is the PVA-independent Vo2, c is the oxygen cost of Emax or contractility, and constant d means the PVA-independent Vo2 at zero Emax. The reciprocal of a refers to the efficiency of PVA generation from the PVA-dependent Vo2, and is called the contractile efficiency. The value for a has been found to be about 1.8 x 10−5ml O2/(mmHg ml) or 2.5 (dimensionless) after the units of both Vo2 and PVA are changed to a common unit of energy (1ml O2 = 20 J, 1mmHg ml = 1.33 x 10−4J). Therefore, 1/a is 0.4 (dimensionless) or 40% on average. We have found that a and c are independent of inotropic interventions although b changes. However, myocardial stunning slightly decreased a and d and doubled c, and myocardial cooling did not change a and c. We consider that the behaviors of a, b, c and d can characterize the mechanoenergetic changes of hearts under various pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drake-Holland AJ, Noble MIM (1983) Cardiac Metabolism. Wiley, New York.

    Google Scholar 

  2. Gibbs CL (1978) Cardiac energetics. Physiol Rev 58:174–254.

    PubMed  CAS  Google Scholar 

  3. Gibbs CL, Chapman JB (1979) Cardiac energetics. In: Bern RM, Sperelakis N, Geiger SR (eds) The Cardiovascular System I. American Physiol Soc, Bethesda, pp 775–804 (Handbook of physiology).

    Google Scholar 

  4. Gibbs CL (1982) Modification of the physiological determinants of cardiac energy expenditure by pharmacological agents. Pharmac Ther 18:133–157.

    Article  CAS  Google Scholar 

  5. Chapman JB (1983) Heat production. In: Drake-Holland AJ, Noble MIM (eds) Cardiac Metabolism. Wiley, New York, pp 239–256.

    Google Scholar 

  6. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277.

    PubMed  CAS  Google Scholar 

  7. Jacob R, Just HJ, Holubarsch CH (1987) Cardiac Energetics. Basic Mechanisms and Clinical Implications. Steinkopff, Darmstadt.

    Google Scholar 

  8. Suga H (1990) Cardiac mechanics and energetics—from Emax to PVA. Front Med Biol Eng 2:3–22.

    PubMed  CAS  Google Scholar 

  9. Evans CL, Matsuoka Y (1915) The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J Physiol (London) 49:378–405.

    CAS  Google Scholar 

  10. Braunwald E (1971) Control of myocardial oxygen consumption. Physiologic and clinical considerations. Am J Cardiol 27:416–432.

    CAS  Google Scholar 

  11. Gibbs CL, Chapman JB (1979) Cardiac heat production. Annu Rev Physiol 41:507–519.

    Article  PubMed  CAS  Google Scholar 

  12. Cooper G IV (1990) Load and length regulation of cardiac energetics. Annu Rev Physiol 52:505–522.

    Article  PubMed  Google Scholar 

  13. Baller D, Bretschneider HJ, Hellige G (1981) A critical look at currently used indirect indices of myocardial oxygen consumption. Basic Res Cardiol 76:163–181.

    Article  PubMed  CAS  Google Scholar 

  14. Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 50: 273–286.

    PubMed  CAS  Google Scholar 

  15. Schipke JD, Burkhoff D, Kass DA, Alexander J, Schaefer J, Sagawa K (1990) Hemodynamic dependence of myocardial oxygen consumption indexes. Am J Physiol 258:H1281–1291.

    PubMed  CAS  Google Scholar 

  16. Futaki S, Goto Y, Ohgoshi Y, Yaku H, Kawaguchi O, Takaoka H, Suga H (1990) Comparison between Bretschneider’s total myocardial energy demand (Et) and our total mechanical energy (PVA) as a predictor of cardiac oxygen consumption in dogs. Jpn J Physiol 40:809–825.

    Article  PubMed  CAS  Google Scholar 

  17. Suga H (1979) Total mechanical energy of a ventricular model and cardiac oxygen consumption. Am J Physiol 236:H498–H505.

    PubMed  CAS  Google Scholar 

  18. Sarnoff SJ, Braunwald E, Welch GH, Case RB, Steinsby WN, Marcruz R (1958) Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time index. Am J Physiol 192:148–156.

    PubMed  CAS  Google Scholar 

  19. Weber KT, Janicki JS (1977) Myocardial oxygen consumption: the role of wall force and shortening. Am J Physiol 233:H421–H430.

    PubMed  CAS  Google Scholar 

  20. Woledge RC, Curtin NA, Homsher E (1985) Energetic aspects of muscle contraction. Academic, London.

    Google Scholar 

  21. Fenn WO (1923) A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol (London) 58:175–203.

    CAS  Google Scholar 

  22. Suga H, Goto Y, Nozawa T, Yasumura Y, Futaki S, Tanaka N (1987) Force- time integral decreases with ejection despite constant oxygen consumption and pressure-volume area in dog left ventricle. Circ Res 60:797–803.

    PubMed  CAS  Google Scholar 

  23. Braunwald E, Ross J Jr, Sonnenblick EH (1976) Mechanisms of contraction of the normal and failing heart, 2nd edn. Little, Brown, Boston.

    Google Scholar 

  24. Endoh M, Yanagisawa T, Taira N, Blinks JR (1986) Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 73(suppl 111):117–133.

    Google Scholar 

  25. Rüegg JC (1988) Calcium in Muscle Activation. Springer, Berlin, pp 36–37.

    Google Scholar 

  26. Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Nonomiya I (1983) Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol 244:H206–H214.

    PubMed  CAS  Google Scholar 

  27. Yasumura Y, Nozawa T, Futaki S, Tanaka N, Goto Y, Suga H (1987) Dissociation of pressure-rate product from myocardial oxygen consumption in dog. Jpn J Physiol 37:657–670.

    Article  PubMed  CAS  Google Scholar 

  28. Britman NA, Levine H (1964) Contractile element work: a major determinant of myocardial oxygen consumption. J Clin Invest 43:1397–1408.

    Article  PubMed  CAS  Google Scholar 

  29. Coleman HN, Sonnenblick EH, Braunwald E (1969) Myocardial oxygen consumption associated with external work: the Fenn effect. Am J Physiol 217:291–296.

    PubMed  CAS  Google Scholar 

  30. Suga H (1979) Total internal mechanical work of ventricle assessed from quick release pressure-volume curve. Jpn J Physiol 29:227–237.

    Article  PubMed  CAS  Google Scholar 

  31. Suga H (1979) External mechanical work from relaxing ventricle. Am J Physiol 236:H494–H497.

    PubMed  CAS  Google Scholar 

  32. Graham TP, Covell JW, Sonnenblick EH (1968) Control of myocardial oxygen consumption: relative influence of contractile state and tension development. J Clin Invest 47:375–385.

    Article  PubMed  Google Scholar 

  33. Suga H (1969) Time course of left ventricular pressure-volume relationship under various end-diastolic volumes. Jpn Heart J 10:509–515.

    Article  PubMed  CAS  Google Scholar 

  34. Suga H (1971) Theoretical analysis of a left ventricular pumping model based on the systolic time-varying pressure/volume ratio. IEEE Trans Biomed Eng BME18:47–55.

    Article  CAS  Google Scholar 

  35. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322.

    PubMed  CAS  Google Scholar 

  36. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126.

    PubMed  CAS  Google Scholar 

  37. Sunagawa K, Sagawa K (1982) Models of ventricular contraction based on time¬varying elastance. CRC Critical Rev Biomed Eng 7:193–228.

    CAS  Google Scholar 

  38. Sagawa K, Maughan L, Suga H, Sunagawa K (1988) Cardiac contraction and the pressure-volume relationship. Oxford University Press, New York.

    Google Scholar 

  39. Yasumura Y, Suga H (1988) Cross-bridge model compatible with the linear relation between left ventricular oxygen consumption and pressure-volume area. Jpn Heart J 29:335–347.

    Article  PubMed  CAS  Google Scholar 

  40. Taylor TW, Goto Y, Futaki S, Kawaguchi O, Hata K, Takasago T, Saeki A, Suga H (1991) Computer simulation of cardiac energetics using a cardiac muscle crossbridge analysis (abstract). In: World Congress on Medical Physics and Biological Engineering, July 7–12 1991, Tokyo.

    Google Scholar 

  41. Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin cross-bridge during one ATP hydrolysis cycle. Nature 316:366–369.

    Article  PubMed  CAS  Google Scholar 

  42. Mast F, Elzinga G (1990) Heat released during relaxation equals force-length area in isometric contractions of rabbit papillary muscle. Circ Res 67:893–901.

    PubMed  CAS  Google Scholar 

  43. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318.

    PubMed  CAS  Google Scholar 

  44. Panerai RB (1980) A model of cardiac muscle mechanics and energetics. J Biomech 13:929–940.

    Article  PubMed  CAS  Google Scholar 

  45. Monroe RG, French GN (1961) Left ventricular pressure-volume relationships and myocardial oxygen consumption in the isolated heart. Circ Res 9:362–374.

    PubMed  CAS  Google Scholar 

  46. Khalafbeigui F, Suga H, Sagawa K (1979) Left ventricular systolic pressure-volume area correlates with oxygen consumption. Am J Physiol 237:H566–H569.

    PubMed  CAS  Google Scholar 

  47. Suga H, Sagawa K (1977) End-diastolic and end-systolic ventricular volume clamper for isolated canine heart. Am J Physiol 233:H718–H722.

    PubMed  CAS  Google Scholar 

  48. Suga H, Hayashi T, Shirahata M (1981) Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 240:H39–H44.

    PubMed  CAS  Google Scholar 

  49. Shepherd AP, Burgar CG (1977) A solid-state arteriovenous oxygen difference analyzer for flowing whole blood. Am J Physiol 232:H437–H440.

    PubMed  CAS  Google Scholar 

  50. Suga H, Futaki S, Ohgoshi Y, Yaku H, Goto Y (1989) Arteriovenous oximeter for O2 content difference, O2 saturations, and hemoglobin content. Am J Physiol 257:H1712–H1716.

    PubMed  CAS  Google Scholar 

  51. Hisano R, Cooper G IV (1987) Correlation of force-length area with oxygen consumption in ferret papillary muscle. Circ Res 61:318–328.

    PubMed  CAS  Google Scholar 

  52. Gibbs CL (1987) Cardiac energetics and the Fenn effect. Basic Res Cardiol 81(suppl2): 61–68, or in: Jacob R, Just Hj, Holubarsch Ch (eds) Cardiac Energetics. Steinkopff, Darmstadt, pp 61–68.

    Google Scholar 

  53. Suga H, Hayashi T, Shirahata M, Suehiro S, Hisano R (1981) Regression of cardiac oxygen consumption on ventricular pressure-volume area in dog. Am J Physiol 240:H320–H325.

    PubMed  CAS  Google Scholar 

  54. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y (1983) Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure-volume area in canine left ventricle. Circ Res 53:306–318.

    PubMed  CAS  Google Scholar 

  55. Suga H, Nozawa T, Yasumura Y, Futaki S, Ohgoshi Y, Yaku H, Goto Y (1990) Force-time integral does not improve predictability of cardiac O2 consumption from pressure-volume area (PVA) in dog left ventricle. Heart Vessels 5:152–158.

    Article  PubMed  CAS  Google Scholar 

  56. Suga H, Goto Y, Nozawa T, Yasumura Y, Futaki S, Tanaka N (1987) Force-time integral decreases with ejection despite constant oxygen consumption and pressure-volume area in dog left ventricle. Circ Res 60:797–803.

    PubMed  CAS  Google Scholar 

  57. Suga H, Yamada O, Goto Y, Igarashi Y (1984) Oxygen consumption and pressure-volume area of abnormal contractions in canine left ventricle. Am J Physiol 246:H154–H160.

    PubMed  CAS  Google Scholar 

  58. Suga H, Goto Y, Yamada O, Igarashi Y (1984) Independence of myocardial oxygen consumption from pressure-volume trajectory during diastole in canine left ventricle. Circ Res 55:734–739.

    PubMed  CAS  Google Scholar 

  59. Hata K, Goto Y, Futaki S, Kawaguchi O, Takasago T, Saeki A, Taylor TW, Suga H (to be published) (1991) External work during relaxation period does not affect myocardial oxygen consumption (abstract). In: World Congress on Medical Physics and Biomedical Engineering, July 7–12 1991, Kyoto.

    Google Scholar 

  60. Suga H, Goto Y, Yasumura Y, Nozawa T, Futaki S, Tanaka N, Uenishi M (1988) Oxygen-saving effect of negative work in dog left ventricle. Am J Physiol 254: H34–H44.

    PubMed  CAS  Google Scholar 

  61. Yasumura Y, Nozawa T, Futaki S, Tanaka N, Suga H (1989) Minor preload dependence of 02 consumption of unloaded contraction in dog heart. Am J Physiol 256:H1289–H1294.

    PubMed  CAS  Google Scholar 

  62. Cooper G IV (1981) Influence of length changes on myocardial metabolism in the cat papillary muscle. Circ Res 49:423–433.

    PubMed  CAS  Google Scholar 

  63. Yasumura Y, Nozawa T, Futaki S, Tanaka N, Suga H (1989) Time-invariant oxygen cost of mechanical energy in dog left ventricle: consistency and inconsistency of time-varying elastance model with myocardial energetics. Circ Res 64:763–778.

    Google Scholar 

  64. Monroe RG (1964) Myocardial oxygen consumption during ventricular contraction and relaxation. Circ Res 14:294–300.

    PubMed  CAS  Google Scholar 

  65. Cooper G IV (1979) Myocardial energetics during isometric twitch contractions of cat papillary muscle. Am J Physiol 236:H244–H253.

    PubMed  Google Scholar 

  66. Duwel CMB, Westerhof N (1988) Feline left ventricular oxygen consumption is not affected by volume expansion, ejection or redevelopment of pressure during relaxation. Pflugers Arch 412:409–416.

    Article  PubMed  CAS  Google Scholar 

  67. Gibbs CL, Wendt IR, Kotsanas G, Young IR (1990) The energy cost of relaxation in control and hypertrophic rabbit papillary muscles. Heart Vessels 5:198–205.

    Article  PubMed  CAS  Google Scholar 

  68. Yasumura Y, Suga H (1989) Addition of internal mechanical energy loss to PVA improves prediction of Vo2 in canine heart (abstract). Circulation 80(suppl II) II-154.

    Google Scholar 

  69. Teplick R, Haas GS, Trautman E, Geffin G, Dagget WM (1986) Time dependence of the oxygen cost of force development during systole in the canine left ventricle. Circ Res 59:27–38.

    PubMed  CAS  Google Scholar 

  70. Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Ninomiya I (1983) Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol 244:H206–H214.

    PubMed  CAS  Google Scholar 

  71. Maughan WL, Sunagawa K, Burkhoff D, Graves WL, Hunter WC, Sagawa K (1985) Effect of heart rate on the canine end-systolic pressure-volume relationship. Circulation 72:654–659.

    Article  PubMed  CAS  Google Scholar 

  72. Solaro RJ, Pan B-S (1989) Control and modulation of contractile activity of cardiac myofilaments. In: Sperelakis N (ed) Physiology and pathophysiology of the heart, 2nd edn. Kluwer Academic, Boston, pp 291–303.

    Google Scholar 

  73. Tada M, Shigekawa M, Kadoma M, Nimura Y (1989) Uptake of calcium by sarcoplasmic reticulum and its regulation and functional consequences. In: Sperelakis N (ed) Physiology and pathophysiology of the heart, 2nd edn. Kluwer Academic, Boston, pp 267–290.

    Google Scholar 

  74. Opie LH (1984) The Heart. Physiology, Metabolism, Pharmacology and Therapy. Grune and Stratton, London.

    Google Scholar 

  75. Nozawa T, Yasumura Y, Futaki S, Tanaka N, Uenishi M, Suga H (1989) The linear relation between oxygen consumption and pressure-volume area in left ventricle can be reconciled with the Fenn effect. Circ Res 65:1380–1389.

    PubMed  CAS  Google Scholar 

  76. Futaki S, Goto Y, Ohgoshi Y, Yaku H, Kawaguchi O, Suga H (to be published) (1991) Denopamine (β1-selective adrenergic receptor agonist) and isoproterenol (non-selective β-adrenergic receptor agonist) equally increase heart rate and myocardial oxygen consumption in dog heart. Jpn Circ J.

    Google Scholar 

  77. Burkhoff D, Yue DT, Oikawa RY, Franz MR, Schaefer J, Sagawa K (1987) Influence of ventricular contractility on non-work-related myocardial oxygen consumption. Heart Vessels 3:66–72.

    Article  PubMed  CAS  Google Scholar 

  78. Akera T, Brody TM (1982) Myocardial membranes: regulation and function of the sodium pump. Ann Rev Physiol 44:375–388.

    Article  CAS  Google Scholar 

  79. Wu D, Yasumura Y, Nozawa T, Tanaka N, Futaki S, Ohgoshi Y, Yaku H, Suga H (1989) Effect of ouabain on the relation between left ventricular oxygen consumption and systolic pressure-volume area (PVA) in dog heart. Heart Vessels 5:17–24.

    Article  PubMed  CAS  Google Scholar 

  80. Suga H, Futaki S, Tanaka N, Yasumura Y, Nozawa T, Wu D, Ohgoshi Y, Yaku H (1988) Paired-pulse pacing increases cardiac O2 consumption for activation without changing efficiency of contractile machinery in canine left ventricle. Heart Vessels 4:79–87.

    Article  PubMed  CAS  Google Scholar 

  81. Nozawa T, Yasumura Y, Futaki S, Tanaka N, Suga H (1990) Effects of bigeminies and paired-pulse stimulation on oxygen consumption in dog left ventricle. Circ Res 67:142–153.

    PubMed  CAS  Google Scholar 

  82. Futaki S, Nozawa T, Yasumura Y, Tanaka N, Suga H (1988) Effects of new inotropic agents on myocardial oxygen consumption vs. pressure-volume area relation (abstract). Jpn Circ J 52:723–724.

    Google Scholar 

  83. Futaki S, Nozawa T, Yasumura Y, Tanake N, Suga H (1988) New cardiotonic agents, OPC-8212, elevates the myocardial oxygen consumption versus pressure-volume area (PVA) relation in a similar manner to catecholamines and calcium in canine hearts. Heart Vessels 4:153–161.

    Article  PubMed  CAS  Google Scholar 

  84. Suga H, Goto Y, Hata K (1990) Cardiac energy supply-demand balance (abstract in Japanese). 1990 Interim Report of Grants for Cardiovascular Diseases (Heisei 2-nendo Junkankibyo-kenkyu-itakuhi niyoru Kenkyu-chukan-houkoku-yoshi), National Cardiovasvular Center, pp 78–79.

    Google Scholar 

  85. Suga H, Goto Y, Yasumura Y, Nozawa T, Futaki S, Tanaka N, Uenishi M (1988) O2 consumption of dog heart under decreased coronary perfusion and pro-pranolol. Am J Physiol 254:H292–H303.

    PubMed  CAS  Google Scholar 

  86. Suga H, Goto Y, Igarashi Y, Yasumura Y, Nozawa T, Futaki S, Tanaka N (1988) Cardiac cooling increases Emax without affecting relation between O2 consumption and systolic pressure-volume area in dog left ventricle. Circ Res 63:61–71.

    PubMed  CAS  Google Scholar 

  87. Elzinga G (1983) Cardiac oxygen consumption and the production of heat and work. In: Drake-Holland AJ, Noble MIM (eds) Cardiac Metabolism Wiley, UK, pp 173–194.

    Google Scholar 

  88. Goto Y, Slinker BK, LeWinter MM (1990) Similar normalized Emax and O2 consumption-pressure-volume area relation in rabbit and dog. Am J Physiol 255: H366–H374.

    Google Scholar 

  89. Suga H, Igarashi Y, Yamada O, Goto Y (1985) Mechanical efficiency of the left ventricle as a function of preload, afterload and contractility. Heart Vessels 1: 3–8.

    Article  PubMed  CAS  Google Scholar 

  90. Ohgoshi Y, Goto Y, Futaki S, Yaku H, Kawaguchi O, Suga H (1990) New method to determine oxygen cost for contractility. Jpn J Physiol 40:127–138.

    Article  PubMed  CAS  Google Scholar 

  91. Klocke FJ, Braunwald E, Ross J (1966) Oxygen cost of electrical activation of the heart. Circ Res 18:357–365.

    PubMed  CAS  Google Scholar 

  92. Langer GA (1967) Sodium exchange in dog ventricular muscle. Relation to frequency of contraction and its possible role in the control of myocardial contractility. J Gen Physiol 50:1221–1239.

    CAS  Google Scholar 

  93. Gibbs CL, Papadoyannis DE, Drake AJ, Noble MIM (1980) Oxygen consumption of the nonworking and potassium chloride-arrested dog heart. Circ Res 47: 408–417.

    PubMed  CAS  Google Scholar 

  94. Ohgoshi Y, Goto Y, Futaki S, Kawaguchi O, Yaku H, Takaoka H, Hata K, Takasago T, Suga H (to be published) (1991) Epinephrine and calcium have similar oxygen cost of contractility. Am J Physiol.

    Google Scholar 

  95. Loiselle DS, Gibbs CL (1983) Factors affecting the metabolism of resting rabbit papillary muscle. Pflugers Arch 396:285–291.

    Article  PubMed  CAS  Google Scholar 

  96. Nozawa T, Yasumura Y, Futaki S, Tanaka N, Suga H (1988) No significant increase in 02 consumption of KC1-arrested dog heart with filling and dobutamine. Am J Physiol 255:H807–H812.

    PubMed  CAS  Google Scholar 

  97. Suga H (1990) Energetics of the time-varying elastance model, a visco-elastic model, matches Mommaerts’ unifying concept of the Fenn effect of muscle. Jpn, Heart J 31:341–353.

    Article  CAS  Google Scholar 

  98. Elzinga G, Westerhof N (1981) “Pressure-volume” relations in isolated cat trabecula. Circ Res 49:388–394.

    PubMed  CAS  Google Scholar 

  99. Chapman JB, Gibbs CL (1972) An energetic model of muscle contrction. Biophys J 12:227–236.

    Article  PubMed  CAS  Google Scholar 

  100. Gibbs CL, Chapman JB (1985) Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. Am J Physiol 249:H199–H206.

    PubMed  CAS  Google Scholar 

  101. Suga H (1980) Relaxing ventricle performs more external work than quickly released elastic energy. Europ Heart J 1(supplA):131–137.

    Google Scholar 

  102. Rall JA (1982) Sense and nonsense about the Fenn effect. Am J Physiol 242: H1–H6.

    PubMed  CAS  Google Scholar 

  103. Mommaerts WFHM (1970) What is the Fenn effect? Naturwissenschaften 57: 326–330.

    Article  Google Scholar 

  104. Gibbs CL (1987) Cardiac energetics and the Fenn effect. In: Jacob R, Just H, Holubarsch C (eds) Cardiac energetics. Basic mechanisms and clinical implication, Steinkopff, Darmstadt, pp 61–68.

    Google Scholar 

  105. Suga H (to be published) (1990) Ventricular perspective on efficiency (abstract). In: Myocardial Optimixation and Efficiency. The 5th Symposium “Myocardial Optimization and Efficiency”, the International Institute for Theoretical Cardiology, Graz, Austria. Walter de Gruyer, Berlin.

    Google Scholar 

  106. Alpert NR, Mulieri LA (1986) Determinants of energy utilization in the activated myocardium. Fed Proc 45:2597–2600.

    PubMed  CAS  Google Scholar 

  107. Goto Y, Slinker BK, LeWinter MM (1990) Decreased contractile efficiency and increased nonmechanical energy cost in hyperthyroid rabbit heart. Relation between O2 consumption and systolic pressure-volume area or force-time integral. Circ Res 66:999–1011.

    PubMed  CAS  Google Scholar 

  108. Suga H, Tanaka N, Ohgoshi Y, Saeki Y, Nakanishi T, Futaki S, Yaku H, Goto Y (to be published) (1991) Hyperthyroid dog left ventricle has the same oxygen consumption versus pressure-volume area (PVA) relation as euthyroid. Heart Vessels.

    Google Scholar 

  109. Suga H, Futaki S, Ohgoshi Y, Yaku H, goto Y (1989) Load- and contractility-independent stoichiometry of energy conversion from excess oxygen consumption to total mechanical energy in canine left ventricle. Muscle Energetics. Alan R. Liss, pp 543–554.

    Google Scholar 

  110. Alpert NR, Mulieri LA, Blanchard E, Litten RZ, Holubarsch C (1989) A myothermal analysis of absolute myosin cross-bridge cycling rates in rat hearts. Muscle Energetics. Alan R. Liss, pp 503–517.

    Google Scholar 

  111. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245: H773–H780.

    PubMed  CAS  Google Scholar 

  112. Yasumura Y, Tanaka N, Nozawa T, Futaki S, Suga H (1988) Dobutamine and calcium do not waste oxygen for mechanical efficiency in canine left ventricle (abstract). Circulation 78(supplII):II-68.

    Google Scholar 

  113. Suga H (to be published) (1991) Constant efficiency versus variable economy of cardiac contraction. Jpn Heart J.

    Google Scholar 

  114. Allen DG, Kurihara S (1980) Calcium transients in mammalian ventricular muscle. Eur Heart J 1(suppIA): 5–15.

    Google Scholar 

  115. Suga H, Goto Y, Futaki S, Kawaguchi O, Yaku H, Hata K, Takasago T (to be published) (1991) Calcium kinetics and energetics in myocardium. Simulation study. Jpn Heart J.

    Google Scholar 

  116. Allen DG, Lee JA (1989) EMD 53998 increases tension with little effect on the amplitude of calcium transients in isolated ferret ventricular muscle. J Physiol 416:43P.

    Google Scholar 

  117. Allen DG, Orchard CH (1983) Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J Physiol 339:107–122

    PubMed  CAS  Google Scholar 

  118. Covell JW, Braunwald E, Ross J, Sonnenblick E (1966) Studies on digitalis. XVI. Effects on myocardial oxygen consumption. J Clin Invest 45:1535–1542.

    Article  PubMed  CAS  Google Scholar 

  119. Suga H (1979) Minimal oxygen consumption and optimal contractility of the heart: theoretical approach to principle of physiological control of contractility. Bull Math Biol 41:139–150.

    PubMed  CAS  Google Scholar 

  120. Tanaka N, Yasumura Y, Nozawa T, Futaki S, Uenishi M, Hiramori K, Suga H (1988) Optimal contractility and minimal oxygen consumption for constant external work of heart. Am J Physiol 254:R933–R943.

    PubMed  CAS  Google Scholar 

  121. Tanaka N, Nozawa T, Yasumura Y, Futaki S, Hiramori K, Suga H (1990) Con¬tractility to minimize oxygen consumption for constant work in dog left ventricle. Heart Vessels 6:9–20.

    Article  PubMed  CAS  Google Scholar 

  122. Goto Y, Slinker BK, LeWinter MM (1991) Effect of coronary hyperemia on Emax and oxygen consumption in blood-perfused rabbit heart. Energetic consequences of Gregg’s phenomenon. Circ Res 68:482–492.

    CAS  Google Scholar 

  123. Ohgoshi Y, Goto Y, Futaki S, Yaku H, Kawaguchi O, Suga H (to be published) (1991) Increased oxygen cost of contractility in stunned myocardium of dog. Circ Res.

    Google Scholar 

  124. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987) Patho-physiology and pathogenesis of stunned myocardium. Depressed Ca 2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961.

    Article  PubMed  CAS  Google Scholar 

  125. Krause SM, Jacobus WE, Becker LC (1989) Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 65:526–530.

    PubMed  CAS  Google Scholar 

  126. Yazaki Y, Raben MS (1975) Effect of the thyroid state on the enzymatic charac¬teristics of cardiac myosin. Circ Res 36:208–215.

    PubMed  CAS  Google Scholar 

  127. Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771.

    PubMed  CAS  Google Scholar 

  128. Kawaguchi O, Goto Y, Suga H (to be published) (1991) Cardiac oxygen consumption under atrial fibrillation. Am J Physiol.

    Google Scholar 

  129. Yaku H, Goto Y, Futaki S, Ohgoshi Y, Kawaguchi O, Suga H (to be published) (1990) Multicompartment model for mechanics and energetics of fibrillating ventricle. Am J Physiol 260.

    Google Scholar 

  130. Yaku H, Goto Y, Futaki S, Ohgoshi Y, Kawaguchi O, Suga H (to be published) (1990) Equivalent pressure-volume area accounts for 02 consumption of fibrillating heart. Am J Physiol.

    Google Scholar 

  131. Burkhoff D, Oikawa RY, Sagawa K (1986) Influence of pacing site on canine left ventricular contraction. Am J Physiol 251:H428–H435.

    PubMed  CAS  Google Scholar 

  132. Suga H, Goto Y, Yaku H, Futaki S, Ohgoshi Y, Kawaguchi O (to be published) (1991) Simulation of mechanoenergetics of asynchronously contracting ventricle. Am J Physiol 259:R1075–R1082.

    Google Scholar 

  133. Nakamura T, Kimura T, Motomiya M, Suzuki N, Arai S (1987) Myocardial oxygen consumption and mechanical efficiency in the pressure-overloaded hypertrophied canine left ventricle (abstract). Automedica 9:188.

    Google Scholar 

  134. Burkhoff D, Sugiura S, Yue DT, Sagawa K (1987) Contractility dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol 252: H1218–H1227.

    PubMed  CAS  Google Scholar 

  135. Suga H, Yamada O, Goto Y, Igarashi Y (1986) Peak isovolumic pressure-volume relation of puppy left ventricle. Am J Physiol 250:H167–H172.

    PubMed  CAS  Google Scholar 

  136. Suga H, Yamada O, Goto Y, Igarashi Y, Yasumura Y, Nozawa T (1987) Left ventricular 02 consumption and pressure-volume area in puppies. Am J Physiol 253:H770–H776.

    PubMed  CAS  Google Scholar 

  137. Jewell BR (1977) A reexamination of the influence of muscle length on myocardial performance. Circ Res 40:221–230.

    PubMed  CAS  Google Scholar 

  138. Yasumura Y, Nozawa T, Futaki S, Tanaka N, Suga H (1988) Ejecting activation and its energetics (abstract). Circulation 78(SupplII):II-225.

    Google Scholar 

  139. Igarashi Y, Goto Y, Yamada O, Ishii T, Suga H (1987) Transient vs. steady end-systolic pressure-volume relation in dog left ventricle. Am J Physiol 252: H998–H1004.

    PubMed  CAS  Google Scholar 

  140. Sugiura S, Hunter WC, Sagawa K (1989) Long-term versus intrabeat history of ejection as determinants of canine ventricular end-systolic pressure. Circ Res 64:255–264.

    PubMed  CAS  Google Scholar 

  141. Suga H, Kitabatake A, Sagawa K (1979) End-systolic pressure determines stroke volume from fixed end-diastolic volume in isolated canine left ventricle under constant contractile state. Circ Res 44:238–249.

    PubMed  CAS  Google Scholar 

  142. Suga H, Goto Y, Igarashi Y, Yamada O (1987) The pressure-volume area as a predictor of cardiac oxygen consumption. CRC Press, Florida. pp 69–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Suga, H., Goto, Y. (1991). Cardiac Oxygen Costs of Contractility (Emax) and Mechanical Energy (PVA): New Key Concepts in Cardiac Energetics. In: Sasayama, S., Suga, H. (eds) Recent Progress in Failing Heart Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67955-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67955-4_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68019-2

  • Online ISBN: 978-4-431-67955-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics