Skip to main content

Toxicology and Genetic Toxicology in the New Era of “Toxicogenomics”: Impact of “-omics” Technologies

  • Conference paper
Toxicogenomics

Abstract

The unprecedented advances in molecular biology during the last two decades have resulted in a dramatic increase in knowledge about gene structure and function, an immense database of genetic sequence information, and an impressive set of efficient new technologies for monitoring genetic sequences, genetic variation, and global functional gene expression. These advances have led to a new sub-discipline of toxicology: “toxicogenomics”. We define toxicogenomics as “the study of the relationship between the structure and activity of the genome (the cellular complement of genes) and the adverse biological effects of exogenous agents.” This broad definition encompasses most of the variations in the current usage of this term, and in its broadest sense includes studies of the cellular products controlled by the genome (messenger RNAs, proteins, metabolites, etc.). The new “global” methods of measuring families of cellular molecules, such as RNA, proteins, and intermediary metabolites have been termed “-omic” technologies, based on their ability to characterize all, or most, members of a family of molecules in a single analysis. With these new tools, we can now obtain complete assessments of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals and species, that were previously unattainable. These powerful new methods of high-throughput and multi-endpoint analysis, include gene expression arrays that will soon permit the simultaneous measurement of the expression of all human genes on a single “chip”. Likewise, there are powerful new methods for protein analysis (proteomics: the study of the complement of proteins in the cell) and for analysis of cellular small molecules (metabonomics: the study of the cellular This article has been reproduced from Mutation Research, Vol 499, 2002, pp 13–25, Aardema & MacGregor, by the permission of Elsevier Science, Ltd. metabolites formed and degraded under genetic control). This will likely be extended in the near future to other important classes of biomolecules such as lipids, carbohydrates, etc. These assays provide a general capability for global assessment of many classes of cellular molecules, providing new approaches to assessing functional cellular alterations. These new methods have already facilitated significant advances in our understanding of the molecular responses to cell and tissue damage, and of perturbations in functional cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O.T. Avery, CM. McLeod, M. McCarty, Studies on the chemical nature of the substance inducing transformation of Pneumococcal types, J. Exp. Med. 79 (1944) 137–158.

    Article  PubMed  CAS  Google Scholar 

  2. J.D. Watson, F.H.C. Crick, Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid, Nature 171 (1953) 737–738.

    Article  PubMed  CAS  Google Scholar 

  3. J.F. Speyer, P. Lengyel, C. Basilio, A.H. Wahba, R.S. Gardner, S. Ochoa, Synthetic polynucleotides and the amino acid code, Cold Spring Harbor Symp. Quant. Biol. 28 (1963) 559–568.

    Article  CAS  Google Scholar 

  4. S.N. Cohen, The manipulation of genes, Sci, Am. 233 (1975) 25–33.

    Article  CAS  Google Scholar 

  5. S.N. Cohen, Gene manipulation, N. Engl. J. Med. 294 (1976) 883–889.

    Article  PubMed  CAS  Google Scholar 

  6. J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, et al., The Sequence of the Human Genome, Science 291 (2001) 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  7. P.O. Brown, D. Botstein, Exploring the new world of the genome with DNA microarrays, Nat. Genet. 21, Suppl 1 (1999) 33–37.

    Article  PubMed  CAS  Google Scholar 

  8. M. Beekman, N. Lakenberg, S.S. Cherny, P. de Knijff, C.C. Kluft, G.J. van Ommen, G.P. Vogler, R.R. Frants, D. I. Boomsma, P.E. Slagboom, A powerful and rapid approach to human genome scanning using small quantities of genomic DNA, Genet Res 77 (2001) 129–34.

    Article  PubMed  CAS  Google Scholar 

  9. N.L. Anderson, J. Taylor, J.P. Hofmann, R. Esquer-Blasco, S. Swift, N.G. Anderson, Simultaneous measurement of hundreds of liver proteins: application in assessment of liver function, Toxicologic Pathology 24, (1996) 72–76.

    Article  PubMed  CAS  Google Scholar 

  10. G. MacBeath and S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination, Science 289 (2000) 1760–1763.

    PubMed  CAS  Google Scholar 

  11. J.R. Yates, III, Mass spectrometry and the age of the proteome, J. Mass Spectrom. 33 (1998) 1–19.

    Article  PubMed  CAS  Google Scholar 

  12. J.R. Yates, III, Mass spectrometry. From genomics to proteomics, Trends Genet, 16 (2000) 5–8.

    Article  PubMed  CAS  Google Scholar 

  13. M.P. Washburn, D. Wolters, J.R. Yates, III, Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat. Biotechnol. 19 (2001) 242–247.

    Article  PubMed  CAS  Google Scholar 

  14. J.K. Nicholson, J. C. Lindon, E. Homes, “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data, Xenobiotica 29 (1999) 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  15. E. Holmes, A.W. Nicholls, J.C. Lindon, S.C. Connor, J.C. Connelly, J.N. Haselden, S.J. Damment, M. Spraul, P. Neidig, J.K. Nicholson, Chemometric models for toxicity classification based on NMR spectra of biofluids, Chem Res Toxicol 13 (2000) 471–478.

    Article  PubMed  CAS  Google Scholar 

  16. E. Holmes, J.K. Nicholson, G. Tranter, Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chem. Res. Toxicol. 14 (2001) 182–191.

    Article  PubMed  CAS  Google Scholar 

  17. J. Lederberg and A.T. McCray, “Ome sweet” Omics-a genealogical treasury of words, The Scientist 15 (2001) p.8.

    Google Scholar 

  18. A.J. Lehman, E.P. Lang, G. Woodard, J.H. Draize, O.G. Fitzhugh, A.A. Nelson, Procedures for the appraisal of the toxicity of chemicals in foods, Food, Drug, Cosmetic Law Quarterly 4 (1949) 412–434.

    CAS  Google Scholar 

  19. J.M. Barnes, F.A. Denz, Experimental methods used in determining chronic toxicity, Pharm. Rev. 6 (1954) 191–242.

    PubMed  CAS  Google Scholar 

  20. J.T. Macgregor, D.A. Casciano, L. Müller, Strategies and testing methods for identifying mutagenic risks. Mutation Res. 455 (2000) 3–21.

    Article  PubMed  CAS  Google Scholar 

  21. T.L. Goldsworthy, L. Recio, K. Brown, L.A. Donehower, J.C. Mirsalis, R.W. Tennant, I.F.H. Purchase, Transgenic animals in toxicology, Fund. Appl. Toxicol. 22 (1994) 8–19.

    Article  CAS  Google Scholar 

  22. J. MacDonald, Evaluation of new models. II, in: P.F. D’Arcy, D.W.G. Harron (Eds.), Proc. Fourth Int. Conf. On Harmonization, Brussels 1997, Greystone Books Ltd., Antrim, N. Ireland, 1998, pp. 272–277.

    Google Scholar 

  23. S.K. Sharan, A. Bradley, Role of transgenic mice in identification and characterization of tumor suppressor genes, Cancer Surv. 25 (1995) 143–159.

    PubMed  CAS  Google Scholar 

  24. U.S. Environmental Protection Agency, Guidelines for carcinogen risk assessment, Fed. Regulations 61 (1996) 17960–18011.

    Google Scholar 

  25. J. DeGeorge, Carcinogenicity testing: A new approach, in: P.F. D’Arcy, D.W.G. Harron (Eds.), Proc. Fourth Int. Conf. On Harmonization, Brussels 1997, Greystone Books Ltd., Antrim, N. Ireland, 1998, pp. 261–263.

    Google Scholar 

  26. L.J. Lesko, J. Woodcock, Pharmacogenomic-guided drug development: Regulatory perspective, Pharmacogen. J., in press.

    Google Scholar 

  27. J.C Corton, S.P. Anderson, A.J. Stauber, D.B. Janszen, J.S. Kimbell, R.B. Conolly, Entering the era of toxicogenomics with DNA microarrays, in CIIT Activities 19,2 (1999) 1–9.

    Google Scholar 

  28. S. Farr, R.T. Dunn, II, Concise review: gene expression applied to toxicology, Toxicol. Sci. 50 (1999) 1–9.

    Article  PubMed  CAS  Google Scholar 

  29. E.F. Nuwaysir, M. Bittner, J. Trent, J.C. Barrett, C.A. Afshari, Microarrays and toxicology: the advent of toxicogenomics, Mol. Carcinog. 24 (1999) 153–159.

    Article  PubMed  CAS  Google Scholar 

  30. W.A. Pennie, Use of cDNA microarrays to probe and understand the toxicological consequences of altered gene expression, Tox. Letters 112–113 (2000) 473–477.

    Article  Google Scholar 

  31. J.C. Rockett, D.J. Dix, Application of DNA arrays to toxicology, Env. Health Perspectives 107, (1999) 681–685.

    Article  CAS  Google Scholar 

  32. J.E. Celias, M. Kruhffer, I. Gromova, C. Frederiksen, M. Østergaard, T. Thykjaer, P. Gromov, J. Yu, H. Pálsdóttir, N. Magnusson, T. F. Ørntoft, Gene Expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics, FEBS Letters 480, (2000) 2–16.

    Article  Google Scholar 

  33. S.A. Jelinsky, P. Estep, G.M. Church, L.D. Samson, Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteosomes, Mole. Cell Biol. 20 (2000) 8157–8167.

    Article  CAS  Google Scholar 

  34. S.A. Jelinsky, L.D. Samson, Global response of Saccharomyces cerevisiae to an alkylating agent, Proc. Natl. Acad. Sci. 96 (1999) 1486–1491.

    Article  PubMed  CAS  Google Scholar 

  35. M.E. Burzynski, M. McMillian, J. Ciervo, L. Li, J. B. Parker, R. T. Dunn, S. Hicken, S. Farr, M. D. Johnson, Toxicogenomics-based discrimination of toxic mechanisms in HepG2 human hepatoma cells, Tox. Sci. 58 (2000) 399–415.

    Article  Google Scholar 

  36. J.F. Waring, R. Ciurlionis, R.A. Jolly, M. Heindel, R.G. Ulrich, Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity, Tox. Letters 120 (2001) 359–368.

    Article  CAS  Google Scholar 

  37. J.C. Corton, A. J. Stauber, Toward construction of a transcript profile database predicitive of chemical toxicity, Tox. Sci. 58 (2000) 217–219.

    Article  CAS  Google Scholar 

  38. T. Lindahl, D. Wood, Quality control by DNA repair, Science 286 (1999) 1897–1905.

    Article  PubMed  CAS  Google Scholar 

  39. A. Ronen, B.W. Glickman, Human DNA repair genes, Env. Molec. Mutagenesis 37 (2001) 241–283.

    Article  CAS  Google Scholar 

  40. L. Ellgaard, M. Molinari, A. Helenius, Setting the Standards:quality control in the secretory pathway, Science, 286 (1999) 1882–1888.

    Article  PubMed  CAS  Google Scholar 

  41. S. Wickner, M.R. Maurizi, S. Gottesman, Posttranslational quality control: folding, refolding and degrading proteins, Science 286 (1999) 1888–1893.

    Article  PubMed  CAS  Google Scholar 

  42. S. Dukan, A. Farewell, M. Ballesteros, F. Taddei, M. Radman, T. Nyström, Protein oxidation in response to increased transcriptional or translational errors, Proc. Natl. Acad. Sci., USA 97 (2000) 5746–5749.

    Article  PubMed  CAS  Google Scholar 

  43. F. Taddei, H. Hayakawa, M.-F. Bouton, A.-M. Cirinesi, I. Matic, M. Sekiguchi, M. Radman, Counteraction by MutT protein of transcriptional errors caused by oxidative damage, Science 278 (1997) 128–130.

    Article  PubMed  CAS  Google Scholar 

  44. J.J. Burns, Pharmacogenetics and drug toxicity. Variation of drug metabolism in animals and prediction of drug action in man, Ann. N.Y. Acad. Sci. 151 (1968) 959–967.

    PubMed  CAS  Google Scholar 

  45. W. Kalow, Contribution of hereditary factors to the response to drugs, Fed. Proc. 24 (1965) 1259–1265.

    PubMed  CAS  Google Scholar 

  46. W. Kalow, Genetic aspects of drug safety, Appl. Ther. 8 (1966) 44–47.

    PubMed  CAS  Google Scholar 

  47. W. Kalow, Pharmacogenetics, Postgrad. Med. 42 (1967) 32–36.

    PubMed  CAS  Google Scholar 

  48. W. Kalow, Drug metabolism enzymes. Pharmacogenetics in animals and man, Ann. N.Y. Acad. Sci. 151 (1968) 694–698.

    PubMed  CAS  Google Scholar 

  49. K. Davies, After the genome: DNA and human disease, Cell 104 (2001) 465–467.

    Article  PubMed  CAS  Google Scholar 

  50. F. Gilbert, Disease genes and chromosomes: disease maps of the human genome, Genet. Test. 4 (2000) 409–426.

    Article  PubMed  CAS  Google Scholar 

  51. J. Ohashi, T.K. Tokunaga, The power of genome-wide association studies of complex disease genes: Statistical limitations of indirect approaches using SNP markers, J. Hum. Genet. 46 (2001) 478–482.

    Article  PubMed  CAS  Google Scholar 

  52. M. Pirmohamed, B.K. Park, Genetic susceptibility to adverse drug reactions, Trends Pharmacol. Sci. 2001, 22 (2001) 298–305.

    Article  CAS  Google Scholar 

  53. W.W. Weber, Effect of pharmacogenetics on medicine, Environ. Molec. Mutagenesis 37 (2001) 179–184.

    Article  CAS  Google Scholar 

  54. K.R. Kaderlik, F.F. Kadlubar, Metabolic polymorphisms and carcinogen-DNA adduct formation in human populations, Pharmacogenetics 5 (1995) 108–117.

    Article  Google Scholar 

  55. D.W. Nebert, Drug-metabolizing enzymes, polymorphisms and interindividual response to environmental toxicants, Clin. Chem. Lab. Med. 38 (2000) 857–861.

    Article  PubMed  CAS  Google Scholar 

  56. F.F. Kadlubar, Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans, Drug Metab. Res. 26 (1994) 37–46.

    Article  CAS  Google Scholar 

  57. W.W. Weber, Populations and genetic polymorphisms. Mol Diagn 4 (1999) 299–307.

    Article  PubMed  CAS  Google Scholar 

  58. L.A. Larsen, P.S. Andersen, J. Kanters, I.H. Svendsen, J.R. Jacobsen, J. Vuust, G. Wettrell, L. Tranebjaerg, J. Bathen, M. Christiansen, Screening for mutations and polymorphisms in the genes KCNH2 and KCNE2 encoding the cardiac HERG/MiRP1 ion channel: implications for acquired and congenital long Q-T syndrome, Clin. Chem. 47 (2001) 1390–1395.

    PubMed  CAS  Google Scholar 

  59. J.A. Hey, M. delPrado, W. Kreutner, R.W. Egan, Cardiotoxic and drug interaction profile of the second generation antihistamines ebastine and terfenadine in an experimental animal model of torsade de pointes, Arzneimittel Forschung 46 (1996) 832–833.

    Google Scholar 

  60. S.J. Smith, Cardiovascular toxicity of antihistamines, Otolaryngol. Head Neck Surg. 111 (1994) 348–354.

    PubMed  CAS  Google Scholar 

  61. A. Upton, N. Johnson, J. Sandy, E. Sim, Arylamine N-acetyltransferases — of mice, men and microorganisms, Trends Pharmacol Sci 22 (2001) 140–146.

    Article  PubMed  CAS  Google Scholar 

  62. M.E. Fabry, Transgenic animal models of sickle cell disease, Experientia 49 (1993) 28–36.

    Article  PubMed  CAS  Google Scholar 

  63. C.L. Crespi, R. Langenbach, B.W. Penman, BW, Human cell lines, derived from AHH-1 TK +/-lymphoblasts, genetically engineered for expression of cytochromes P450, Toxicology 82 (1993) 89–104.

    Article  PubMed  CAS  Google Scholar 

  64. C.L. Crespi, and B.W. Penman, Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. Adv Pharmacol 43 (1997) 171–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Aardema, M.J., MacGregor, J.T. (2003). Toxicology and Genetic Toxicology in the New Era of “Toxicogenomics”: Impact of “-omics” Technologies. In: Inoue, T., Pennie, W.D. (eds) Toxicogenomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66999-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66999-9_22

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67001-8

  • Online ISBN: 978-4-431-66999-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics