Skip to main content

Neocarzinostatin Chromophore: Structure and Mechanism of DNA Cleavage

  • Chapter
Neocarzinostatin

Summary

Neocarzinostatin (NCS) is a member of a family of chromoprotein antitumor antibiotics. It consists of two noncovalently bound components, a labile chromophore component (NCS-chrom) with biological activities such as DNA cleavage and a protein component that stabilizes NCS-chrom. NCSchrom was the first of the enediyne antibiotics to be isolated and characterized. The chemical structure has been elucidated: a novel epoxybicyclo [7,3,01 dodecadienediyne system, an interconnecting highly unsaturated 12-member carbon ring subunit, bearing subunits 2-hydroxy-5-methyl-7-methoxyl1-naphthoate, 2,6-dideoxy-2-methylamino-galactose, and ethylene carbonate. The mechanism for the activation of NCS-chrom highlights one of the crucial roles of the thiol in the mechanism of action of NCS. Nucleophilic attack by a thiol results in a Bergman-type electronic rearrangement to form a biradical species that cleaves DNA by abstracting hydrogen atoms from the deoxyribose sugar. Moreover, another pathway for the thiol-independent mechanism of action of NCS-chrom has been proposed. In this mechanism, the spirolactone cumulene is stereoselectively generated via an intramolecular Michael addition at C-12 by the enolate anion of naphthoate of NCS-chrom, resulting in the formation of the biradical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edo K, Mizugaki M, Koide Y, Seto H, Furihata K, ()take N, Ishida N (1985) The structure of neocarzinostatin chromophore possessing a novel bicyclo[7,3,0ldodecadyne system. Tetrahedron Lett 26: 331 - 334

    CAS  Google Scholar 

  2. Goldberg IH, Kappen LS (1995) Neocarzinostatin: chemical and biological basis of oxidative DNA damage. In: Borders BD, Doyle TW (eds) Enediyne antibiotics as antitumor agents. Dekker, New York, pp 327 - 362

    Google Scholar 

  3. Hensens OD, Goldberg 1H (1989) Mechanism of activation of the antitumor antibiotic neocarzinostatin by mercaptan and sodium borohydride. J Antibiot (Tokyo) 42: 76 1768

    Google Scholar 

  4. Sakata N, Minamitani S, Kanbe T, Hori M, Hamada M, Edo K (1993) The amino acid sequence of neocarzinostatin apoprotein deduced from the base sequence of the gene. Biol Pharm Bull 16: 26 - 28

    Article  PubMed  CAS  Google Scholar 

  5. Chimura H, Ishizuka M, Hamada M, Hori S, Kimura K, Iwanaga J, Takeuchi T, Umezawa H (1968) A new antibiotic, macromomycin, exhibiting antitumor and antimicrobial activity. J Antibiot (Tokyo) 21: 44 - 49

    Article  CAS  Google Scholar 

  6. Khokhlov AS, Cherches BZ, Reshetov PD, Smirnova GM, Sorokina IB, Prokoptzeva TA, Koloditskaya TA, Smirnov VV, Navashin SM, Fomina IP (1969) Physicochemical and biological studies on actinoxanthin, an antibiotic from Actinomvices globisporus 1131. J Antibiot (Tokyo) 22: 541 - 544

    Article  CAS  Google Scholar 

  7. Khokhlov AS, Reshetov PD, Chupova LA, Cherches BZ, Zhigis LS, Stoyachenko IA (1976) Chemical studies on actinoxanthin. J Antibiot (Tokyo) 29: 1026 - 1034

    Article  CAS  Google Scholar 

  8. Hu J, Xue YC, Xie MY, Zhang R, Otani T, Minami Y, Yamada Y, Marunaka T (1988) A new macromolecular antitumor antibiotic, C-1027. I. Discovery, taxonomy of producing organism, fermentation and biological activity. J Antibiot (Tokyo) 41: 1575 1579

    Google Scholar 

  9. Otani T, Minami Y, Marunaka T, Zhang R, Xie MY (1988) A new macromolecular antitumor antibiotic, C-1027. II. Isolation and physico-chemical properties. J Antibiot (Tokyo) 41: 1580 - 1585

    Article  CAS  Google Scholar 

  10. Zhen YS, Ming XY, Yu B, Otani T, Saito H, Yamada Y (1989) A new macromolecular antitumor antibiotic, C-1027. III. Antitumor activity. J Antibiot (Tokyo) 42: 1294 - 1298

    Article  CAS  Google Scholar 

  11. Sugimoto Y, Otani T, Oie S, Wierzba K, Yamada Y (1990) Mechanism of action of a new macromolecular antitumor antibiotic, C-1027. J Antibiot (Tokyo) 43: 417 - 421

    Article  CAS  Google Scholar 

  12. Lam KS, Hesler GA, Gustayson DR, Crosswell AR, Veitch JM, Forenza S, Tomita K (1991) Kedarcidin, a new chromoprotein antitumor antibiotic. I. Taxonomy of producing organism, fermentation and biological activity. J Antibiot (Tokyo) 44: 472 - 478

    Article  CAS  Google Scholar 

  13. Hofstead SJ, Matson JA, Malacko AR, Marquardt H (1992) Kedarcidin, a new chromoprotein antitumor antibiotic. II. Isolation, purification and physico-chemical properties. J Antibiot (Tokyo) 45: 1250 - 1254

    Article  CAS  Google Scholar 

  14. Leet JE, Schroeder DR, Langley DR, Colson KL, Huang S, Klohr SE, Lee MS, Golik J, Hofstead SJ, Doyle TW, Matson JA (1993) Chemistry and structure elucidation of the kedarcidin chromophore. J Am Chem Soc 115: 8432 - 8443

    Article  CAS  Google Scholar 

  15. Hanada M, Ohkuma H, Yonemoto T, Tornita K, Ohbayashi M, Kamei H, Miyaki T, Konishi M, Kawaguchi H (1991) Maduropeptin, a complex of new macromolecular antitumor antibiotics. J Antibiot (Tokyo) 44: 403 - 414

    Article  CAS  Google Scholar 

  16. Schroeder DR, Colson KL, Klohr SE, Zein N, Langley DR, Lee MS, Matson JA, Doyle TW (1994) Isolation, structure determination, and proposed mechanism of action for artifacts of maduropeptin chromophore. J Am Chem Soc 116: 93519352

    Google Scholar 

  17. Golik J, Dubay G, Groenewold G, Kawaguchi H, Konishi M, Krishnan B, Ohkuma H, Saitoh K, Doyle TW (1987) Esperamicins, a novel class of potent antitumor antibiotics. 3. Structures of esperamicin A,, A,, and A. J Am Chem Soc 109: 3462 - 3464

    Article  CAS  Google Scholar 

  18. Lee MD, Dunne TS, Chang CC, Ellestad GA, Siegel MM, Morton GO, McGahren WJ, Borders DB (1987) Calichemicins, a novel family of antitumor antibiotics. 2. Chemistry and structure of calichemicin y;. J Am Chem Soc 109: 3466 - 3468

    Article  CAS  Google Scholar 

  19. Konishi M, Ohkuma H, Matsumoto K, Tsuno T, Kamei H, Miyaki T, Oki T, Kawaguchi H, vanDuyne GD, Clardy J (1989) Dynemicin A, a novel antibiotic with the anthraquinone and 1,5-diyn-3-ene subunit. J Antibiot (Tokyo) 42: 1449 - 1452

    Article  CAS  Google Scholar 

  20. Ishida N, Miyazaki K, Kumagai K, Rikimaru M (1965) Neocarzinostatin, an antitumor antibiotic of high molecular weight. J Antibiot Ser A (Tokyo) 18: 68 - 76

    CAS  Google Scholar 

  21. Shoji J (1961) Preliminary studies on the isolation of carzinostatin complex and its characteristics. J Antibiot Ser A (Tokyo) 14: 27 - 33

    Google Scholar 

  22. Maeda H, Glaser CB, Kuromizu K, Meienhofer J (1974) Structure of the antitumor protein neocarzinostatin. Arch Biochem Biophys 164: 379 - 385

    Article  PubMed  CAS  Google Scholar 

  23. Gibson BW, Herlihy WC, Samy TSA, Hahm KS, Maeda H, Meienhofer J, Biemann K (1984) A revised primary structure for neocarzinostatin based on fast atom bombardment and gas chromatographic-mass spectrometry. J Biol Chem 259: 10801 - 10806

    PubMed  CAS  Google Scholar 

  24. Kuromizu K, Tsunasawa S, Maeda H, Abe O, Sakiyama F (1986) Reexamination of the primary structure of an antitumor protein, neocarzinostatin. Arch Biochem Biophys 246: 199 - 205

    Article  PubMed  CAS  Google Scholar 

  25. Napier MA, Holmquist B, Strydom DJ, Goldberg IH (1979) Neocarzinostatin: spectral characterization and separation of a non-protein chromophore. Biochem Biophys Res Commun 89: 635 - 642

    Article  PubMed  CAS  Google Scholar 

  26. Iseki S, Koide Y, Ebina T, Ishida N (1980) Biological activities and physicochemical properties of pre-neocarzinostatin and UV-irradiated neocarzinostatin. J Antibiot (Tokyo) 33: 110 - 113

    Article  CAS  Google Scholar 

  27. Koide Y, Ishii F, Hasuda K, Koyama Y, Edo K, Katamine S, Kitame F, Ishida N (1980) Isolation of a non-protein component and a protein component from neocarzinostatin (NCS) and their biological activities. J Antibiot (Tokyo) 33: 342 - 346

    Article  CAS  Google Scholar 

  28. Suzuki H, Miura K, Kumada Y, Takeuchi T, Tanaka N (1980) Biological activities of non-protein chromophores of antitumor protein antibiotics: auromomycin and neocarzinostatin. Biochem Biophys Res Commun 94: 255 - 261

    Article  PubMed  CAS  Google Scholar 

  29. Maeda H (1981) Neocarzinostatin in cancer chemotherapy (review). Anticancer Res 1: 175 - 186

    PubMed  CAS  Google Scholar 

  30. Meienhofer J, Maeda H, Glaser CB, Czombos J, Kuromizu K (1972) Primary structure of neocarzinostatin, an antitumor protein. Science 178: 875 - 876

    Article  PubMed  CAS  Google Scholar 

  31. Ono Y, Watanabe Y, Ishida N (1966) Mode of action of neocarzinostatin: inhibition of DNA synthesis and degradation of DNA in Sarcinn loten. Biochim Biophys Acta 119: 46 - 58

    Article  PubMed  CAS  Google Scholar 

  32. Ohtsuki K, Ishida N (1975) Neocarzinostatin-induced breakdown of deoxyribonucleic acid in HeLa-S3 cells. J Antibiot (Tokyo) 28: 143 - 148

    Article  CAS  Google Scholar 

  33. Kappen LS, Goldberg IH (1979) Mechanism of the effect of organic solvents and other protein denaturants on neocarzinosatin activity. Biochemistry 18: 56475653

    Google Scholar 

  34. Napier MA, Kappen LS, Goldberg IH (1980) Effect of nonprotein chromophore removal on neocarzinostatin action. Biochemistry 19: 1767 - 1773

    Article  PubMed  CAS  Google Scholar 

  35. Ohtsuki K, Ishida N (1980) The biological effect of a nonprotein component removed from neocarzinostatin ( NCS ). J Antibiot (Tokyo) 33: 744-750

    Google Scholar 

  36. Edo K, Akiyama-Murai Y, Saito K, Mizugaki M, Koide Y, Ishida N (1988) Hydrogen bromide adduct of neocarzinostatin chromophore: One of the stable derivatives of native neocarzinostatin chromophore. J Antibiot (Tokyo) 41: 1272 - 1274

    Article  CAS  Google Scholar 

  37. Lee SH, Goldberg IH (1988) Role of epoxide in neocarzinostatin chromophore stability and action. Mol Pharmacol 33: 936 - 401

    Google Scholar 

  38. Hensens OD, Dewey RS, Liesch JM, Napier MA, Reamer RA, Smith JL, Schönberg GA, Goldberg IH (1983) Neocarzinostatin chromophore: presence of a highly strained ether ring and its reaction with mercaptan and sodium borohydride. Biochem Biophys Res Commun 113: 5. 38 - 547

    Google Scholar 

  39. Edo K, Katamine S, Kitame F, Ishida N, Koide Y, Kusano G, Nozoe S (1980) Naphthalenecarboxylic acid from neocarzinostatin (NCS). J Antibiot (Tokyo) 33: 347351

    Google Scholar 

  40. Schönberg GA, Dewey RS, Hensens OD, Liesch JM, Napier MA, Goldberg IH (1980) Neocarzinostatin: chemical characterization and partial structure of the non-protein chromophore. Biochem Biophys Res Commun 95: 1351 - 1356

    Article  Google Scholar 

  41. Napier MA, Goldberg IH, Hensens OD, Dewey RS, Liesch JM, Schönberger GA (1981) Neocarzinostatin chromophore: presence of a cyclic carbonate subunit and its modification in the structure of other biologically active forms. Biochem Biophys Res Commun 100: 1703 - 1712

    Article  PubMed  CAS  Google Scholar 

  42. Edo K, Ito M, Ishida N, Koide Y, Ito A, Haga M, Takahashi T, Suzuki Y, Kusano G (1982) Peroxy acid as a partial structure of neocarzinostatin (NCS) chromophore. J Antibiot (Tokyo) 35: 106 - 110

    Article  CAS  Google Scholar 

  43. Shibuya M, Toyooka K, Kubota S (1984) Synthesis of the naphthalenecarboxylic acid derivative obtained from neocarzinostatin (NCS): a structure revision. Tetrahedron Lett 25: 1171 - 1174

    Article  CAS  Google Scholar 

  44. Koide Y, Ito A, Edo K, Ishida N (1986) The biologically active site of neocarzinostatin-chromophore. Chem Pharm Bull (Tokyo) 34: 4425 - 4428

    Article  CAS  Google Scholar 

  45. Edo K, Akiyama Y, Saito K, Mizugaki M, Koide Y, Ishida N (1986) Absolute configuration of the amino sugar moiety of the neocarzinosatin chromophore. J Antibiot (Tokyo) 39: 1615 - 1619

    Article  CAS  Google Scholar 

  46. Myers AG, Proteau PJ, Handel TM (1988) Stereochemical assignment of neocarzinostatin chromophore. Structures of neocarzinostatin chromophore—methyl thioglycolate adducts. J Am Chem Soc 110: 7212 - 7214

    Article  CAS  Google Scholar 

  47. Wender PA, Harmata M, Jeffery D, Mukai C, Suffert J (1988) Studies on DNA-active agents: the synthesis of the parent carbocyclic subunit of neocarzinostatin chromophore A. Tetrahedron Lett 29: 909 - 912

    Article  CAS  Google Scholar 

  48. Hensens OD, Giner JL, Goldberg IH (1989) Biosynthesis of NCS chrom A, the chromophore of the antitumor antibiotic neocarzinostatin. J Am Chem Soc 111: 32953299

    Google Scholar 

  49. Kloster-Jensen E, Wirz J (1975) 1,5-Cyclooctadiyne. Preparation and reactivity. HeIv Chim Acta 58: 162 - 177

    Google Scholar 

  50. Edo K, Iseki S, Ishida N, Horie T, Kusano G, Nozoe S (1980) An electron spin resonance study of a spin adduct of the non-protein component (NPC) of neocarzinostatin. J Antibiot (Tokyo) 33: 1586 - 1589

    Article  CAS  Google Scholar 

  51. Sheridan RP, Gupta RK (1981) Electron spin resonance detection of free radicals in the mercaptan-activation and UV-inactivation of neocarzinostatin. Biochem Biophys Res Commun 99: 213 - 220

    Article  PubMed  CAS  Google Scholar 

  52. Myers AG (1987) Proposed structure of the neocarzinostatin chromophore—methyl thiogycolate adduct: a mechanism from the nucleophilic activation of neocarzinostatin. Tetrahedron Lett 28: 4493 - 4496

    Article  CAS  Google Scholar 

  53. Myers AG, Cohen SB, Kwon BM (1994) DNA cleavage by neocarzinostatin chromophore. Establishing the intermediacy of chromophore-derived cumulene and biradical species and their role in sequence-specific cleavage. J Am Chem Soc 116: 1670 - 1682

    Article  CAS  Google Scholar 

  54. Myers AG, Proteau PJ (1989) Evidence for spontaneous, low-temperature biradical formation from a highly reactive neocarzinostatin chromophore-thiol conjugate. J Am Chem Soc 1 1 L: 1 146-1 147

    Google Scholar 

  55. Yang CF. Stassinopoulos A, Goldberg IH (1995) Specific binding of the biradical analog of neocarzinostatin chromophore to bulged DNA: implications for thiolindependent cleavage. Biochemistry 34:2267-2275

    Google Scholar 

  56. Goldberg IH (1987) Free radical mechanisms in neocarzinostatin-induced DNA damage. Free Radical Biol Med 3: 41 - 54

    Article  CAS  Google Scholar 

  57. Kim KH, Kwon BM, Myers AG, Rees DC (1993) Crystal structure of neocarzinostatin, an antitumor protein-chromophore complex. Science 262: 1042 - 1046

    Article  PubMed  CAS  Google Scholar 

  58. Napier MA, Holmquist B, Strydom DJ, Goldberg IH (1981) Neocarzinostatin chromophore: purification of the major active form and characterization of its spectral and biological properties. Biochemistry 20: 5602 - 5608

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Edo, K., Koide, Y. (1997). Neocarzinostatin Chromophore: Structure and Mechanism of DNA Cleavage. In: Maeda, H., Edo, K., Ishida, N. (eds) Neocarzinostatin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66914-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66914-2_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66916-6

  • Online ISBN: 978-4-431-66914-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics