Skip to main content

The Moving Grid Finite Element Method Applied to Biological Problems

  • Chapter
Morphogenesis and Pattern Formation in Biological Systems

Summary

This paper presents a novel numerical technique, the moving grid finite element method, to solve generalised Turing [20] reaction-diffusion type models on continuously deforming growing domains. Applications to the development of bivalve ligaments and pigmentation colour patterns in the wing of the butterfly Papilio dardanus will be considered, by way of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baines, M.J. (1994). Moving Finite Elements. Monographs on Numerical Analysis, Qxford: Clarendon Press.

    Google Scholar 

  2. Baines, M.J. and Wathen, A.J. (1988). Moving finite element method for evolutionary problems. I. Theory J. Cornp. Phys.; 79, 245 - 269.

    MathSciNet  MATH  Google Scholar 

  3. Crampin, E.J., Gaffney, E.A., and Maini, P.K. (1999). Pattern formation through reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61, 1093 - 1120.

    Article  Google Scholar 

  4. Gierer, A. and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik., 12, 30 - 39.

    Article  Google Scholar 

  5. Jimack, P.K. and Wathen, A.J. (1991). Temporal derivatives in the finite element method on continuously deforming grids. SIAM J. Numer. Anal., 28, 990 - 1003.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kondo, S. and Asai, R. (1995). A reaction-diffusion wave on the skin of the marine anglefish, Pomacanthus. Nature, 376, 765 - 768.

    Article  Google Scholar 

  7. Madzvamuse, A., Thomas, R.D.K., Maini, P.K., and Wathen, A.J. (2002). A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves. Bull. Math. Biol., 64, 501 - 530.

    Article  Google Scholar 

  8. Meinhardt, H. (1995). The Algorithmic Beauty of Sea Shells. Heidelberg, New York, Springer-Verlag.

    Google Scholar 

  9. Morton, K.W. and Mayers, D.F. (1994). Numerical Solution of Partial Differential Equations. Cambridge University Press.

    Google Scholar 

  10. Murray, J.D. (1993). Mathematical Biology. Springer-Verlag, Berlin, 2nd edition.

    Book  MATH  Google Scholar 

  11. Nijhout, H.F. (1991). The Development and Evolution of Butterfly Wing Patterns. Washington, DC. Smithsonian Institution Press.

    Google Scholar 

  12. Reddy, T.N. (1984). An Introduction to the Finite Element Method,McGrawHlll.

    Google Scholar 

  13. Saad, Y. (1986), Iterative Methods for Sparse Linear Systems. PWS Publishing Co.

    Google Scholar 

  14. Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol., 81, 389 - 400.

    Article  MathSciNet  Google Scholar 

  15. Schwanwitsch, B.N. (1924). On the ground plan of wing-pattern in the nymphalids and certain other families of rhopalocerous Lepidoptera. Proc. Zoo. Soc. Lond. B, 34, 509 - 528.

    Google Scholar 

  16. Sekimura, T., Madzvamuse, A., Wathen, A.J., and Maini, P.K. (2000). A model for colour pattern formation in the butterfly wing of Papilio dardanus. Proc. Roy. Soc. Lond. B, 267, 851 - 859.

    Article  Google Scholar 

  17. Süffert, F. (1927). Zur vergleichende analyse der schmetterlingszeichung. Biol. Zbl., 47, 385 - 413.

    Google Scholar 

  18. Thomas, R.D.K., Madzvamuse, A., Maini, P.K., and Wathen, A.J. (2000). Growth patterns of noetiid ligaments: Implications of developmental models for the origin of an evolutionary novelty among arcoid bivalves. The Evol. Biol. of the Biv. Geological Soc. Lond., 177, 279 - 289.

    Article  Google Scholar 

  19. Trueman, E.R. Ligament. In: Moore R.C. (ed.) (1969) Treatise on Invertebrate Paleontology. Geo. Soc. Amer. and Univ. of Kansas. Part N. Mollusca, 6, 58-64.,

    Google Scholar 

  20. Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. 8, 237, 37 - 72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Madzvamuse, A., Thomas, R.D.K., Sekimura, T., Wathen, A.J., Maini, P.K. (2003). The Moving Grid Finite Element Method Applied to Biological Problems. In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds) Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65958-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65958-7_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65960-0

  • Online ISBN: 978-4-431-65958-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics