Skip to main content

Regulation of Inflorescence Architecture and Organ Shape by the ERECTA Gene in Arabidopsis

  • Chapter
Morphogenesis and Pattern Formation in Biological Systems

Summary

The architecture of higher plants is largely determined by the size, shape, and arrangement of the shoot organs that are formed in a reiterative manner by the shoot apical meristem. Immense variations in plant architecture, due to altered shape, size, and position of the individual shoot unit, has significance in adaptation as well as domestication of crop plants. The Arabidopsis erecta mutant displays a dramatic alteration in inflorescence architecture and organ shape. Morphometric analysis of representative erecta alleles with different severities revealed that ERECTA regulates pedicel length and plant size in a quantitative manner but has complex effects on floral organ size: The organs of erecta mutants contain a lesser number of larger, and isotropically expanded cortex cells, suggesting that ERECTA is required for a coordinated cell proliferation or cell expansion within the same tissue layer (i.e. cortex). The molecular identity of ERECTA as a leucine-rich repeat receptor-like kinase (LRR-RLK) is consistent with its predicted role in cell-cell coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowman, J.L. (1993). Arabidopsis: An Atlas of Morphology and Development. New York: Springer-Verlag.

    Google Scholar 

  2. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science, 275, 80–83.

    Article  Google Scholar 

  3. Clark, S.E., Williams, R.W. and Meyerowitz, E.M. (1997). The CLAVATAI gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89, 575–585.

    Article  Google Scholar 

  4. Doebley, J., Stec, A. and Hubbard, L. (1997). The evolution of apical diminance in maize. Nature, 386, 485–488.

    Article  Google Scholar 

  5. Douglas, S.J., Chuck, G., Dengler, R.E., Pelecanda, L. and Riggs, C.D. (2002). KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell, 14, 547–558.

    Article  Google Scholar 

  6. Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282, 2226–2230.

    Article  Google Scholar 

  7. Jones, D.A. and Jones, J.D.G. (1997). The role of Leucine-rich repeats in plant defences. Advances in Botanical Research incorporating Advances us Plant Pathology, 24, 90–167.

    Google Scholar 

  8. Juenger, T., Purugganan, M. and Mackay, T.F. (2000). Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics, 156, 1379–1392.

    Google Scholar 

  9. Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B. and Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell, 104, 131–142.

    Article  Google Scholar 

  10. Komeda, Y., Takahashi, T. and Hanzaw-a, Y. (1998). Development of inflorescneces in Arabidopsis thaliana. J.Plant Res, 111, 283–288.

    Article  Google Scholar 

  11. Krizek, B.A. (1999). Ectopic expression AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25, 224–236.

    Article  Google Scholar 

  12. Lease, K.A., Lau, N.Y., Schuster, R.A., Toni, K.U. and Walker, J.C. (2001). Receptor serine/threonine protein kinases in signaling: analysis of the Erecta receptor-like kinase of Arabidopsis thaliana. New Phytol, 151, 133–144.

    Article  Google Scholar 

  13. Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E. and Walker, J.C. (2001). A mutant Arabidopsis heterotrimeric G-protein beta subunit affects leaf, flower, and fruit development. Plant Cell, 13, 2631–2641.

    Google Scholar 

  14. Leyser, H. and Furrier, I. (1992). Characterization of 3 shoot apical meristem mutants of Arabidopsis thaliana. Development, 116, 397–403.

    Google Scholar 

  15. Mizukami, Y. and Fischer, R. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Nati Acad Sci USA, 97, 942–947.

    Article  Google Scholar 

  16. Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell, 3, 677–684.

    Google Scholar 

  17. Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000). Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12, 507–518.

    Google Scholar 

  18. Shu, G., Amaral, W., Hiieman, L.C. and Baum, D.A. (2000). LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaeeae). Ara, I Bot, 87, 634–641.

    Google Scholar 

  19. Smyth, D.R., Bowman. J.L. and Meyerowitz, E.M. (1990). Early, flower development in Arabidopsis. Plant Cell, 2, 755–767.

    Google Scholar 

  20. Suzuki, M., Takahashi, T. and Komeda, Y. (2002). Formation of corymb-like inflorescences due to delay in bolting and flower development in the corymbosa2 mutant of Arabidopsis. Plant Cell Physiol, 43, 298–306.

    Article  Google Scholar 

  21. Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, P. Whittier, R.F. and Komeda, Y. (1996). The Arabidopsis ERECTA gene encode, a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 8. 735–746.

    Google Scholar 

  22. Venglat, S.P., Dumonceaux, T., Rozwadowski, K., Parnell, L., Babic, V., Keller, W., Martienssen, R., Selvaraj, G. and Datla, R. (2002). The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis.. Proc Nati Aced Sci USA, 99, 4730–4735.

    Article  Google Scholar 

  23. Weberling, F. (1989). Morphology of Flowers and Inflorescences. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Weigel, D. and Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature, 377, 495–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this chapter

Cite this chapter

Torii, K.U., Hanson, L.A., Josefsson, C.A.B., Shpak, E.D. (2003). Regulation of Inflorescence Architecture and Organ Shape by the ERECTA Gene in Arabidopsis. In: Sekimura, T., Noji, S., Ueno, N., Maini, P.K. (eds) Morphogenesis and Pattern Formation in Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65958-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65958-7_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65960-0

  • Online ISBN: 978-4-431-65958-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics