Skip to main content

Muse Cells Are Endogenous Reparative Stem Cells

  • Chapter
  • First Online:
Muse Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1103))

Abstract

The dynamics and actions of Muse cells at a time of physical crisis are unique and highly remarkable compared with other stem cell types. When the living body is in a steady state, low levels of Muse cells are mobilized to the peripheral blood, possibly from the bone marrow, and supplied to the connective tissue of nearly every organ. Under conditions of serious tissue damage, such as acute myocardial infarction and stroke, Muse cells are highly mobilized to the peripheral blood, drastically increasing their numbers in the peripheral blood within 24 h after the onset of tissue injury. The alerting signal, sphingosine-1-phosphate, attracts Muse cells to the damaged site mainly via the sphingosine-1-phosphate receptor 2, enabling them to preferentially home to site of injury. After homing, Muse cells spontaneously differentiate into tissue-compatible cells and replenish new functional cells for tissue repair. Because Muse cells have pleiotropic effects, including paracrine, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects, these cells synergistically deliver long-lasting functional and structural recovery. This chapter describes how Muse cells exert their reparative effects in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hori E et al (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovas Dis 25:1473–1481. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.12.033

    Article  Google Scholar 

  2. Tanaka T et al (2018) Mobilized muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J. Tanaka et al., 2018 Cir J 82(2):561–571. https://doi.org/10.1253/circj.CJ-17-0552

    Article  PubMed  Google Scholar 

  3. Kinoshita K et al (2015) Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med 4:146–155. https://doi.org/10.5966/sctm.2014-0181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamauchi T et al (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10:e0116009. https://doi.org/10.1371/journal.pone.0116009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katagiri H et al (2016) A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant 16:468–483. https://doi.org/10.1111/ajt.13537

    Article  CAS  PubMed  Google Scholar 

  6. Uchida H et al (2016) Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34:160–173. https://doi.org/10.1002/stem.2206

    Article  CAS  PubMed  Google Scholar 

  7. Iseki M et al (2017) Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant 26:821–840. https://doi.org/10.3727/096368916X693662

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uchida H et al (2017) Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke 48:428–435. https://doi.org/10.1161/STROKEAHA.116.014950

    Article  PubMed  Google Scholar 

  9. Uchida N et al (2017) Beneficial effects of systemically administered human muse cells in adriamycin nephropathy. J Am Soc Nephrol 28:2946–2960. https://doi.org/10.1681/ASN.2016070775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamada Y et al (2018) S1P-S1PR2 axis mediates homing of muse cells into damaged heart for long lasting tissue repair and functional recovery after acute myocardial infarction. Circ Res. Yamada et al, 2018 Cir Res 122(8):1069-1083. https://doi.org/10.1161/circresaha.117.311648

    Article  CAS  PubMed  Google Scholar 

  11. Barbash IM et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868. https://doi.org/10.1161/01.cir.0000084828.50310.6a

    Article  PubMed  Google Scholar 

  12. Schrepfer S et al (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576. https://doi.org/10.1016/j.transproceed.2006.12.019

    Article  CAS  PubMed  Google Scholar 

  13. Aguilar S et al (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25:1586–1594. https://doi.org/10.1634/stemcells.2006-0762

    Article  PubMed  Google Scholar 

  14. Li H et al (2008) Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells 26:2531–2541. https://doi.org/10.1634/stemcells.2008-0146

    Article  CAS  PubMed  Google Scholar 

  15. Togel F, Yang Y, Zhang P, Hu Z, Westenfelder C (2008) Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury. Am J Physiol Renal Physiol 295:F315–F321. https://doi.org/10.1152/ajprenal.00098.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurtz A (2008) Mesenchymal stem cell delivery routes and fate. Int J Stem Cells 1:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Assis AC et al (2010) Time-dependent migration of systemically delivered bone marrow mesenchymal stem cells to the infarcted heart. Cell Transplant 19:219–230. https://doi.org/10.3727/096368909x479677

    Article  PubMed  Google Scholar 

  18. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. https://doi.org/10.1186/s13287-015-0271-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brooks A et al (2018) Concise review: quantitative detection and modeling the in vivo kinetics of therapeutic mesenchymal stem/stromal cells. Stem Cells Transl Med 7:78–86. https://doi.org/10.1002/sctm.17-0209

    Article  PubMed  Google Scholar 

  20. Peled A et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  CAS  PubMed  Google Scholar 

  21. Bonig H, Priestley GV, Papayannopoulou T (2006) Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood 107:79–86. https://doi.org/10.1182/blood-2005-05-2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vessey DA, Li L, Honbo N, Karliner JS (2009) Sphingosine 1-phosphate is an important endogenous cardioprotectant released by ischemic pre- and postconditioning. Am J Physiol Heart Circ Physiol 297:H1429–H1435. https://doi.org/10.1152/ajpheart.00358.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratajczak MZ, Suszynska M, Borkowska S, Ratajczak J, Schneider G (2014) The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin Ther Targets 18:95–107. https://doi.org/10.1517/14728222.2014.851671

    Article  CAS  PubMed  Google Scholar 

  24. Karpova D, Bonig H (2015) Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis–lessons from pharmacological and genetic models. Stem Cells 33:2391–2399. https://doi.org/10.1002/stem.2054

    Article  CAS  PubMed  Google Scholar 

  25. Son BR et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264. https://doi.org/10.1634/stemcells.2005-0271

    Article  CAS  PubMed  Google Scholar 

  26. Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28:299–307. https://doi.org/10.1016/j.it.2007.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu X et al (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2:845–854. https://doi.org/10.1007/s13238-011-1097-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cencioni C, Capogrossi MC, Napolitano M (2012) The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 94:400–407. https://doi.org/10.1093/cvr/cvs132

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8:243–250. https://doi.org/10.1007/s12015-011-9293-z

    Article  CAS  Google Scholar 

  30. van de Kamp J, Jahnen-Dechent W, Rath B, Knuechel R, Neuss S (2013) Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment. Stem Cells Int 2013:892065. https://doi.org/10.1155/2013/892065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vogel S et al (2013) Migration of mesenchymal stem cells towards glioblastoma cells depends on hepatocyte-growth factor and is enhanced by aminolaevulinic acid-mediated photodynamic treatment. Biochem Biophys Res Commun 431:428–432. https://doi.org/10.1016/j.bbrc.2012.12.153

    Article  CAS  PubMed  Google Scholar 

  32. Mathias S, Pena LA, Kolesnick RN (1998) Signal transduction of stress via ceramide. Biochem J 335(Pt 3):465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893–4903

    Article  CAS  PubMed  Google Scholar 

  34. Levade T et al (2002) Ceramide in apoptosis: a revisited role. Neurochem Res 27:601–607

    Article  CAS  PubMed  Google Scholar 

  35. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407. https://doi.org/10.1038/nrm1103

    Article  CAS  PubMed  Google Scholar 

  36. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616. https://doi.org/10.1038/nrc1411

    Article  CAS  PubMed  Google Scholar 

  37. Schwab SR et al (2005) Lymphocyte sequestration through s1p lyase inhibition and disruption of S1P gradients. Science 309:1735–1739. https://doi.org/10.1126/science.1113640

    Article  CAS  PubMed  Google Scholar 

  38. Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763. https://doi.org/10.1038/nri2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Obinata H, Hla T (2012) Sphingosine 1-phosphate in coagulation and inflammation. Semin Immunopathol 34:73–91. https://doi.org/10.1007/s00281-011-0287-3

    Article  CAS  PubMed  Google Scholar 

  40. Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608. https://doi.org/10.1194/jlr.R046300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922. https://doi.org/10.1002/jcb.20127

    Article  CAS  PubMed  Google Scholar 

  42. Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal 34:66–75. https://doi.org/10.1016/j.cellsig.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  43. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  44. Proia RL, Hla T (2015) Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest 125:1379–1387. https://doi.org/10.1172/jci76369

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ghasemi R, Dargahi L, Ahmadiani A (2016) Integrated sphingosine-1 phosphate signaling in the central nervous system: from physiological equilibrium to pathological damage. Pharmacol Res 104:156–164. https://doi.org/10.1016/j.phrs.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  46. Spiegel S, Milstien S (2007) Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282:2125–2129. https://doi.org/10.1074/jbc.R600028200

    Article  CAS  PubMed  Google Scholar 

  47. Osada M, Yatomi Y, Ohmori T, Ikeda H, Ozaki Y (2002) Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem Biophys Res Commun 299:483–487

    Article  CAS  PubMed  Google Scholar 

  48. Gimeno ML et al (2017) Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-beta1. Stem Cells Transl Med 6:161–173. https://doi.org/10.5966/sctm.2016-0014

    Article  CAS  PubMed  Google Scholar 

  49. Fisch SC et al (2017) Pluripotent nontumorigenic multilineage differentiating stress enduring cells (muse cells): a seven-year retrospective. Stem Cell Res Ther 8:227. https://doi.org/10.1186/s13287-017-0674-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kovats S et al (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223

    Article  CAS  PubMed  Google Scholar 

  51. Onno M et al (1994) The HLA-G gene is expressed at a low mRNA level in different human cells and tissues. Human Immunol 41:79–86. doi:https://doi.org/10.1016/0198-8859(94)90089-2

    Article  CAS  PubMed  Google Scholar 

  52. Ferreira LM, Meissner TB, Tilburgs T, Strominger JL (2017) HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol 38:272–286. https://doi.org/10.1016/j.it.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  53. Rizzo R, Bortolotti D, Bolzani S, Fainardi E (2014) HLA-G molecules in autoimmune diseases and infections. Front Immunol 5:592. https://doi.org/10.3389/fimmu.2014.00592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiroishi M et al (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A 100:8856–8861. https://doi.org/10.1073/pnas.1431057100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Endo S, Sakamoto Y, Kobayashi E, Nakamura A, Takai T (2008) Regulation of cytotoxic T lymphocyte triggering by PIR-B on dendritic cells. Proc Natl Acad Sci U S A 105:14515–14520. https://doi.org/10.1073/pnas.0804571105

    Article  PubMed  PubMed Central  Google Scholar 

  56. Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869. https://doi.org/10.1073/pnas.142298299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim EM, Manzar G, Zavazava N (2013) Human iPS cell-derived hematopoietic progenitor cells induce T-cell anergy in in vitro-generated alloreactive CD8(+) T cells. Blood 121:5167–5175. https://doi.org/10.1182/blood-2012-11-467753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kyurkchiev S et al (2012) Stem cells in the reproductive system. Am J of Reprod Immunol (NEW YORK, NY: 1989) 67:445–462. https://doi.org/10.1111/j.1600-0897.2012.01140.x

    Article  CAS  Google Scholar 

  59. Nasef A et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237. https://doi.org/10.1097/01.tp.0000267918.07906.08

    Article  CAS  PubMed  Google Scholar 

  60. Ivanova-Todorova E et al (2009) HLA-G expression is up-regulated by progesterone in mesenchymal stem cells. Am J Reprod Immunol 62:25–33. https://doi.org/10.1111/j.1600-0897.2009.00707.x

    Article  CAS  PubMed  Google Scholar 

  61. Lila N et al (2002) Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation 105:1949–1954

    Article  PubMed  Google Scholar 

  62. Alessio N et al (2017) The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell cycle (Georgetown, Tex) 16:33–44. https://doi.org/10.1080/15384101.2016.1211215

    Article  CAS  Google Scholar 

  63. Chen XH et al (2007) In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia-reperfusion injury through its multiple actions. J Card Fail 13:874–883. https://doi.org/10.1016/j.cardfail.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  64. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236. https://doi.org/10.1172/jci6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mias C et al (2009) Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells 27:2734–2743. https://doi.org/10.1002/stem.169

    Article  CAS  PubMed  Google Scholar 

  66. Loffredo FS, Steinhauser ML, Gannon J, Lee RT (2011) Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 8:389–398. https://doi.org/10.1016/j.stem.2011.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Duarte S, Baber J, Fujii T, Coito AJ (2015) Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol J Int Soc Matrix Biol 44-46:147–156. https://doi.org/10.1016/j.matbio.2015.01.004

    Article  CAS  Google Scholar 

  68. Somerville RPT, Oblander SA, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol 4:216. https://doi.org/10.1186/gb-2003-4-6-216

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46:955–975. doi:https://doi.org/10.1016/j.jhep.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  70. Roeb E (2017) Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol J Int Soc Matrix Biol. https://doi.org/10.1016/j.matbio.2017.12.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Dezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushida, Y., Wakao, S., Dezawa, M. (2018). Muse Cells Are Endogenous Reparative Stem Cells. In: Dezawa, M. (eds) Muse Cells. Advances in Experimental Medicine and Biology, vol 1103. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56847-6_3

Download citation

Publish with us

Policies and ethics