Skip to main content

Application of Muse Cell Therapy for Kidney Diseases

  • Chapter
  • First Online:
Muse Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1103))

Abstract

The kidney plays an essential role in the maintenance of homeostasis in healthy individuals, e.g., by regulating the amount of water and concentration of electrolyte in the body. Owing to the structural complexity, renal dysfunction is caused by a myriad of diseases and conditions, and in severe cases, it progresses to end-stage renal disease in which patients require renal replacement therapy, i.e., maintenance dialysis or kidney transplantation. The currently available therapeutic modalities, with the exception of renal transplantation, cannot recover severely deteriorated renal function. Thus, regenerative medicine holds considerable promise as a potential means for developing next-generation renal therapeutics. Mesenchymal stem cell (MSC) transplantation has been investigated in acute kidney injury and chronic kidney disease models, and clinical studies have already been started for some kinds of kidney diseases. However, most of these studies concluded that the main underlying mechanism of therapeutic effect of MSC transplantation was paracrine. Recently, we reported that Muse cell therapy in a murine model of chronic kidney disease resulted in differentiation of intravenously injected Muse cells into glomerular cells after preferential homing to damaged glomerulus and improvement in renal function. The result suggested the potentiality of Muse cell therapy for glomerular regeneration. Muse cells are a promising cell source for regenerative therapy for kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perantoni AO (2003) Renal development: perspectives on a Wnt-dependent process. Semin Cell Dev Biol 14:201–208

    Article  CAS  Google Scholar 

  2. Little MH (2015) Kideny development, disease, repair and regeneration. Acdemic press, Boston

    Google Scholar 

  3. Schell C, Wanner N, Huber TB (2014) Glomerular development–shaping the multi-cellular filtration unit. Semin Cell Dev Biol 36:39–49

    Article  CAS  Google Scholar 

  4. Nagata M (2016) Podocyte injury and its consequences. Kidney Int 89:1221–1230

    Article  CAS  Google Scholar 

  5. Andeen NK, Nguyen TQ, Steegh F, Hudkins KL, Najafian B, Alpers CE (2015) The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy. Kidney Int 88:1099–1107

    Article  CAS  Google Scholar 

  6. Becker JU, Hoerning A, Schmid KW, Hoyer PF (2007) Immigrating progenitor cells contribute to human podocyte turnover. Kidney Int 72:1468–1473

    Article  CAS  Google Scholar 

  7. Kellum JA, Lameire N (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17:204

    Article  Google Scholar 

  8. Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353

    PubMed  PubMed Central  Google Scholar 

  9. Westenfelder C, Togel FE (2011) Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney int Suppl 1:103–106

    Article  Google Scholar 

  10. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 67:2089–2100

    Article  Google Scholar 

  11. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382:260–272

    Article  Google Scholar 

  12. Thomas B, Matsushita K, Abate KH, Al-Aly Z, Arnlov J, Asayama K, Atkins R, Badawi A, Ballew SH, Banerjee A, Barregard L, Barrett-Connor E, Basu S, Bello AK, Bensenor I, Bergstrom J, Bikbov B, Blosser C, Brenner H, Carrero JJ, Chadban S, Cirillo M, Cortinovis M, Courville K, Dandona L, Dandona R, Estep K, Fernandes J, Fischer F, Fox C, Gansevoort RT, Gona PN, Gutierrez OM, Hamidi S, Hanson SW, Himmelfarb J, Jassal SK, Jee SH, Jha V, Jimenez-Corona A, Jonas JB, Kengne AP, Khader Y, Khang YH, Kim YJ, Klein B, Klein R, Kokubo Y, Kolte D, Lee K, Levey AS, Li Y, Lotufo P, HMA ER, Mendoza W, Metoki H, Mok Y, Muraki I, Muntner PM, Noda H, Ohkubo T, Ortiz A, Perico N, Polkinghorne K, Al-Radaddi R, Remuzzi G, Roth G, Rothenbacher D, Satoh M, Saum KU, Sawhney M, Schottker B, Shankar A, Shlipak M, DAS S, Toyoshima H, Ukwaja K, Umesawa M, Vollset SE, Warnock DG, Werdecker A, Yamagishi K, Yano Y, Yonemoto N, MES Z, Naghavi M, Forouzanfar MH, CJL M, Coresh J, Vos T (2017) Global cardiovascular and renal outcomes of reduced GFR. J Am Soc Nephrol 28:2167–2179

    Article  CAS  Google Scholar 

  13. Sharma S, Sarnak MJ (2017) Epidemiology: the global burden of reduced GFR: ESRD, CVD and mortality. Nat Rev Nephrol 13:447–448

    Article  Google Scholar 

  14. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  Google Scholar 

  15. Roushandeh AM, Bahadori M, Roudkenar MH (2017) Mesenchymal stem cell-based therapy as a new horizon for kidney injuries. Arch Med Res 48:133–146

    Article  CAS  Google Scholar 

  16. Hu J, Zhang L, Wang N, Ding R, Cui S, Zhu F, Xie Y, Sun X, Wu D, Hong Q, Li Q, Shi S, Liu X, Chen X (2013) Mesenchymal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions. Kidney Int 84:521–531

    Article  CAS  Google Scholar 

  17. Tsuda H, Yamahara K, Otani K, Okumi M, Yazawa K, Kaimori JY, Taguchi A, Kangawa K, Ikeda T, Takahara S, Isaka Y (2014) Transplantation of allogenic fetal membrane-derived mesenchymal stem cells protects against ischemia/reperfusion-induced acute kidney injury. Cell Transplant 23:889–899

    Article  Google Scholar 

  18. Morigi M, Introna M, Imberti B, Corna D, Abbate M, Rota C, Rottoli D, Benigni A, Perico N, Zoja C, Rambaldi A, Remuzzi A, Remuzzi G (2008) Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26:2075–2082

    Article  CAS  Google Scholar 

  19. Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E, Buchstaller A, Huss R, Akis N, Schlondorff D, Anders HJ (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70:121–129

    Article  CAS  Google Scholar 

  20. Sun D, Bu L, Liu C, Yin Z, Zhou X, Li X, Xiao A (2013) Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One 8:e65042

    Article  CAS  Google Scholar 

  21. Toyohara T, Mae S, Sueta S, Inoue T, Yamagishi Y, Kawamoto T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, Sato-Otsubo A, Takahashi K, Sato Y, Yamaji N, Ogawa S, Yamanaka S, Osafune K (2015) Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med 4:980–992

    Article  CAS  Google Scholar 

  22. Luo J, Zhao X, Tan Z, Su Z, Meng F, Zhang M (2013) Mesenchymal-like progenitors derived from human embryonic stem cells promote recovery from acute kidney injury via paracrine actions. Cytotherapy 15:649–662

    Article  CAS  Google Scholar 

  23. Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y, Kondo Y, Hirohara Y, Kure S, Chazenbalk G, Dezawa M (2017) Beneficial effects of systemically administered human muse cells in adriamycin nephropathy. J Am Soc Nephrol 28:2946–2960

    Article  CAS  Google Scholar 

  24. Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M, Maruyama N, Hosoya T, Ohno T (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409

    CAS  PubMed  Google Scholar 

  25. Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635

    CAS  PubMed  Google Scholar 

  26. Rookmaaker MB, Smits AM, Tolboom H, Van ‘t Wout K, Martens AC, Goldschmeding R, Joles JA, Van Zonneveld AJ, Grone HJ, Rabelink TJ, Verhaar MC (2003) Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol 163:553–562

    Article  Google Scholar 

  27. Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, Cook HT (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24:2448–2455

    Article  CAS  Google Scholar 

  28. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235

    Article  CAS  Google Scholar 

  29. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49

    Article  CAS  Google Scholar 

  30. Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R (2005) Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol 16:1723–1732

    Article  CAS  Google Scholar 

  31. Ikarashi K, Li B, Suwa M, Kawamura K, Morioka T, Yao J, Khan F, Uchiyama M, Oite T (2005) Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int 67:1925–1933

    Article  CAS  Google Scholar 

  32. Li B, Morioka T, Uchiyama M, Oite T (2006) Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69:323–330

    Article  CAS  Google Scholar 

  33. Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 103:7321–7326

    Article  CAS  Google Scholar 

  34. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  Google Scholar 

  35. Borges FT, Schor N (2018) Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 33:1457–1465

    Article  Google Scholar 

  36. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  Google Scholar 

  37. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  Google Scholar 

  38. Luo H, Xu C, Liu Z, Yang L, Hong Y, Liu G, Zhong H, Cai X, Lin X, Chen X, Wang C, Zhang N, Xu W (2017) Neural differentiation of bone marrow mesenchymal stem cells with human brain-derived neurotrophic factor gene-modified in functionalized self-assembling peptide hydrogel in vitro. J Cell Biochem. https://doi.org/10.1002/jcb.26408

  39. Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y (2005) Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 106:756–763

    Article  CAS  Google Scholar 

  40. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886

    Article  Google Scholar 

  41. Baer PC, Geiger H (2010) Mesenchymal stem cell interactions with growth factors on kidney repair. Curr Opin Nephrol Hypertens 19:1–6

    Article  CAS  Google Scholar 

  42. Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G (2013) Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis 61:300–309

    Article  Google Scholar 

  43. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025

    CAS  PubMed  Google Scholar 

  44. Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One 7:e33115

    Article  CAS  Google Scholar 

  45. Maeshima A, Nakasatomi M, Nojima Y (2014) Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int 2014:595493

    PubMed  PubMed Central  Google Scholar 

  46. Matsumoto K, Mizuno S, Nakamura T (2000) Hepatocyte growth factor in renal regeneration, renal disease and potential therapeutics. Curr Opin Nephrol Hypertens 9:395–402

    Article  CAS  Google Scholar 

  47. Togel F, Zhang P, Hu Z, Westenfelder C (2009) VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med 13:2109–2114

    Article  Google Scholar 

  48. Humes HD, Cieslinski DA, Coimbra TM, Messana JM, Galvao C (1989) Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest 84:1757–1761

    Article  CAS  Google Scholar 

  49. Miller SB, Martin DR, Kissane J, Hammerman MR (1992) Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci USA 89:11876–11880

    Article  CAS  Google Scholar 

  50. Chen J, Chen JK, Harris RC (2012) Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int 82:45–52

    Article  CAS  Google Scholar 

  51. Zhou D, Tan RJ, Lin L, Zhou L, Liu Y (2013) Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int 84:509–520

    Article  CAS  Google Scholar 

  52. Behr L, Hekmati M, Fromont G, Borenstein N, Noel LH, Lelievre-Pegorier M, Laborde K (2007) Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol 107:65–76

    Article  Google Scholar 

  53. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  CAS  Google Scholar 

  54. Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496

    Article  Google Scholar 

  55. Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH, Seguro AC, Pacheco-Silva A, Saraiva Camara NO (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27:3063–3073

    CAS  PubMed  Google Scholar 

  56. Choi S, Park M, Kim J, Hwang S, Park S, Lee Y (2009) The role of mesenchymal stem cells in the functional improvement of chronic renal failure. Stem Cells Develop 18:521–529

    Article  CAS  Google Scholar 

  57. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25:829–848

    Article  Google Scholar 

  58. Togel FE, Westenfelder C (2012) Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 60:1012–1022

    Article  Google Scholar 

  59. Dong BT, Tu GJ, Han YX, Chen Y (2015) Lithium enhanced cell proliferation and differentiation of mesenchymal stem cells to neural cells in rat spinal cord. Int J Clin Exp Pathol 8:2473–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31:235–240

    Article  CAS  Google Scholar 

  61. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M (2013) Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc 8:1391–1415

    Article  Google Scholar 

  62. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Nabeshima Y, Fujiyoshi Y, Dezawa M (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643

    Article  CAS  Google Scholar 

  63. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, Dezawa M (2016) Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34:160–173

    Article  CAS  Google Scholar 

  64. Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, Doi K, Kanayama K, Feng J, Mashiko T, Kurisaki A, Yoshimura K (2015) Therapeutic potential of adipose-derived SSEA-3-positive Muse cells for treating diabetic skin ulcers. Stem Cells Translat Med 4:146–155

    Article  CAS  Google Scholar 

  65. Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T, Kubo M, Horie Y, Sasahara M, Kuroda S (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis 25:1473–1481

    Article  Google Scholar 

  66. Tanaka T, Nishigaki K, Minatoguchi S, Nawa T, Yamada Y, Kanamori H, Mikami A, Ushikoshi H, Kawasaki M, Dezawa M, Minatoguchi S (2018) Mobilized muse cells after acute myocardial infarction predict cardiac function and remodeling in the chronic phase. Circ J 82:561–571

    Article  Google Scholar 

  67. Dezawa M (2016) Muse cells provide the Pluripotency of mesenchymal stem cells: direct contribution of muse cells to tissue regeneration. Cell Transplant 25:849–861

    Article  Google Scholar 

  68. Batchelder CA, Lee CC, Matsell DG, Yoder MC, Tarantal AF (2009) Renal ontogeny in the rhesus monkey (Macaca mulatta) and directed differentiation of human embryonic stem cells towards kidney precursors. Differentiation 78:45–56

    Article  CAS  Google Scholar 

  69. Lee VW, Harris DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology (Carlton) 16:30–38

    Article  Google Scholar 

  70. Rampino T, Gregorini M, Bedino G, Piotti G, Gabanti E, Ibatici A, Sessarego N, Piacenza C, Balenzano CT, Esposito P, Bosio F, Soccio G, Frassoni F, Dal Canton A (2011) Mesenchymal stromal cells improve renal injury in anti-Thy 1 nephritis by modulating inflammatory cytokines and scatter factors. Clin Sci (Lond) 120:25–36

    Article  CAS  Google Scholar 

  71. Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742

    Article  Google Scholar 

  72. Kuroda Y, Dezawa M (2014) Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat Rec (Hoboken) 297:98–110

    Article  CAS  Google Scholar 

  73. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, Nakahata T, Fujiyoshi Y, Dezawa M (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108:9875–9880

    Article  CAS  Google Scholar 

  74. Klinkhammer BM, Kramann R, Mallau M, Makowska A, van Roeyen CR, Rong S, Buecher EB, Boor P, Kovacova K, Zok S, Denecke B, Stuettgen E, Otten S, Floege J, Kunter U (2014) Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PLoS One 9:e92115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nao Uchida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uchida, N., Kumagai, N., Kondo, Y. (2018). Application of Muse Cell Therapy for Kidney Diseases. In: Dezawa, M. (eds) Muse Cells. Advances in Experimental Medicine and Biology, vol 1103. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56847-6_11

Download citation

Publish with us

Policies and ethics