Skip to main content

Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke

  • Chapter
  • First Online:
Muse Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1103))

Abstract

Multilineage-differentiating stress enduring (Muse) cells are one of the most promising donor cells for cell therapy against ischemic stroke, because they can differentiate into any type of cells constructing the central nervous system (CNS), including the neurons. They can easily be isolated from the bone marrow stromal cells (BMSCs), which may also contribute to functional recovery after ischemic stroke as donor cells. In this chapter, we concisely review their biological features and then future perspective of Muse cell transplantation for ischemic stroke. In addition, we briefly refer to the surprising role of Muse cells to maintain the homeostasis in the living body under both physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuroda S (2008) How should we bridge the missing steps in translational research for stroke therapy? – a critical review. Jpn J Stroke 30:875–880

    Article  Google Scholar 

  2. Kuroda S (2013) Bone marrow stromal cell transplantation for ischemic stroke – its multi-functional feature. Acta Neurobiol Exp (Wars) 73:57–65

    Google Scholar 

  3. Kuroda S (2016) Current opinion of bone marrow stromal cell transplantation for Ischemic stroke. Neurol Med Chir (Tokyo) 56:293–301

    Article  Google Scholar 

  4. Kuroda Y, Kitada M, Wakao S et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643

    Article  CAS  Google Scholar 

  5. Miura Y (2015) Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol 103(2):122–128

    Article  Google Scholar 

  6. Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y (2007) Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 1183:138–147

    Article  CAS  Google Scholar 

  7. Yano S, Kuroda S, Shichinohe H, Hida K, Iwasaki Y (2005) Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct? – a double labeling study. Brain Res 1065:60–67

    Article  CAS  Google Scholar 

  8. Zhong C, Qin Z, Zhong CJ, Wang Y, Shen XY (2003) Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci Lett 342:93–96

    Article  CAS  Google Scholar 

  9. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S (2005) Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105:3793–3801

    Article  CAS  Google Scholar 

  10. Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035:73–85

    Article  CAS  Google Scholar 

  11. Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y (2008) Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 86:1024–1035

    Article  CAS  Google Scholar 

  12. Kamei N, Tanaka N, Oishi Y et al (2007) Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine 6:412–419

    Article  Google Scholar 

  13. Shichinohe H, Kuroda S, Tsuji S et al (2008) Bone marrow stromal cells promote neurite extension in organotypic spinal cord slice: significance for cell transplantation therapy. Neurorehabil Neural Repair 22:447–457

    Article  Google Scholar 

  14. Ito M, Kuroda S, Sugiyama T et al (2012) Transplanted bone marrow stromal cells protect neurovascular units and ameliorate brain damage in stroke-prone spontaneously hypertensive rats. Neuropathology 32:522–533

    Article  Google Scholar 

  15. Shichinohe H, Ishihara T, Takahashi K et al (2015) Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabil Neural Repair 29:80–89

    Article  Google Scholar 

  16. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    Article  CAS  Google Scholar 

  17. Auletta JJ, Deans RJ, Bartholomew AM (2012) Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood 119:1801–1809

    Article  CAS  Google Scholar 

  18. Yang B, Hamilton JA, Valenzuela KS et al (2017) Multipotent adult progenitor cells enhance recovery after stroke by modulating the immune response from the spleen. Stem Cells 35:1290–1302

    Article  CAS  Google Scholar 

  19. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  Google Scholar 

  20. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats – similarities to astrocyte grafts. Proc Natl Acad Sci USA 95:3908–3913

    Article  CAS  Google Scholar 

  21. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716

    Article  CAS  Google Scholar 

  22. Yamaguchi S, Kuroda S, Kobayashi H et al (2006) The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)-a preliminary study using microarray analysis. Brain Res 1087:15–27

    Article  CAS  Google Scholar 

  23. Bossolasco P, Cova L, Calzarossa C et al (2005) Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 193:312–325

    Article  CAS  Google Scholar 

  24. Hermann A, Liebau S, Gastl R et al (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83:1502–1514

    Article  CAS  Google Scholar 

  25. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  CAS  Google Scholar 

  26. Liu Z, Li Y, Zhang ZG et al (2010) Bone marrow stromal cells enhance inter- and intracortical axonal connections after ischemic stroke in adult rats. J Cereb Blood Flow Metab 30:1288–1295

    Article  Google Scholar 

  27. Chiba Y, Kuroda S, Maruichi K et al (2009) Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model. Neurosurgery 64:991–999 discussion 999-1000

    Article  Google Scholar 

  28. Ito M, Kuroda S, Sugiyama T et al (2011) Validity of bone marrow stromal cell expansion by animal serum-free medium for cell transplantation therapy of cerebral infarct in rats – a serial MRI study. Transl Stroke Res 2:294–306

    Article  Google Scholar 

  29. Yamauchi T, Kuroda Y, Morita T et al (2015) Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One 10:e0116009

    Article  Google Scholar 

  30. Wakao S, Kitada M, Kuroda Y et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108:9875–9880

    Article  CAS  Google Scholar 

  31. Uchida H, Morita T, Niizuma K et al (2015) Transplantation of unique subpopulation of fibroblasts, Muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells 34(1):160–173

    Article  Google Scholar 

  32. Dezawa M (2016) Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant 25:849–861

    Article  Google Scholar 

  33. Hori E, Hayakawa Y, Hayashi T et al (2016) Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis 25:1473–1481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuroda, S., Koh, M., Hori, E., Hayakawa, Y., Akai, T. (2018). Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke. In: Dezawa, M. (eds) Muse Cells. Advances in Experimental Medicine and Biology, vol 1103. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56847-6_10

Download citation

Publish with us

Policies and ethics