Skip to main content

Landmarking Brains

  • Chapter
  • First Online:
Digital Endocasts

Abstract

Geometric morphometric techniques are extensively used in paleontology and evolutionary biology to describe and quantify shape variation. These approaches, however, are rarely used in neuroscience. Approaches emphasizing qualitative anatomical description and volumetric measurements of brain structures dominate evolutionary neuroscience, whereas automated computing-intensive approaches are the norm in the field of human neuroimaging. Such approaches often are not compatible with formal quantitative assessments of brain evolution (anatomical descriptions), overlook fundamental aspects of shape variation (volumetric measurements), or involve intensive processing of neuroimaging scans, which can complicate straightforward neurobiological interpretation of results. Here we review how geometric morphometrics can provide a useful toolkit to analyze brain variation in a comparative and evolutionary context. We suggest different methodological alternatives within geometric morphometrics, highlighting their advantages and disadvantages. We also discuss how strengths of automated neuroimaging techniques can be combined with geometric morphometric analytical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24:7–14

    Google Scholar 

  • Aldridge K (2011) Patterns of differences in brain morphology in humans as compared to extant apes. J Hum Evol 60:94–105

    Article  Google Scholar 

  • Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthr 118:341–358

    Article  Google Scholar 

  • Anticevic A, Dierker DL, Gillespie SK et al (2008) Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia. NeuroImage 41:835–848

    Article  Google Scholar 

  • Anticevic A, Repovs G, Dierker DL et al (2012) Automated landmark identification for human cortical surface-based registration. NeuroImage 59:2539–2547

    Article  Google Scholar 

  • Aristide L, dos Reis SF, Machado AC et al (2016) Brain shape convergence in the adaptive radiation of new world monkeys. Proc Natl Acad Sci U S A 113:2158–2163

    Article  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  Google Scholar 

  • Bookstein FL (1997) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bookstein FL, Sampson PD, Streissguth AP, Connor PD (2001) Geometric morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-affected brain. Teratology 64:4–32

    Article  Google Scholar 

  • Boyer DM, Puente J, Gladman JT et al (2015) A new fully automated approach for aligning and comparing shapes. Anat Rec 298:249–276

    Article  Google Scholar 

  • Bruner E, Martin-Loeches M, Colom R (2010) Human midsagittal brain shape variation: patterns, allometry and integration. J Anat 216:589–599

    Article  Google Scholar 

  • Chiavaras MM, Petrides M (2000) Orbitofrontal sulci of the human and macaque monkey brain. J Comp Neurol 422:35–54

    Article  Google Scholar 

  • Chollet MB, Aldridge K, Pangborn N et al (2014) Landmarking the brain for geometric morphometric analysis: an error study. PLoS One 9:e86005

    Article  Google Scholar 

  • Cointepas Y, Mangin J-F, Garnero L et al (2001) BrainVISA: software platform for visualization and analysis of multi-modality brain data. NeuroImage 13:98

    Article  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194

    Article  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980

    Article  Google Scholar 

  • de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–714

    Article  Google Scholar 

  • Finlay B, Darlington R (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  Google Scholar 

  • Fischl B (2012) FreeSurfer. NeuroImage 62:774–781

    Article  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 97:11050–11055

    Article  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  Google Scholar 

  • Fischl B, Sereno MI, Tootell RBH, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  Google Scholar 

  • Fischl B, Rajendran N, Busa E et al (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980

    Article  Google Scholar 

  • Glasser MF, Sotiropoulos SN, Wilson JA et al (2013) The minimal preprocessing pipelines for the human connectome project. NeuroImage 80:105–124

    Article  Google Scholar 

  • Gómez-Robles A, Olejniczak AJ, Martinón-Torres M et al (2011) Evolutionary novelties and losses in geometric morphometrics: a practical approach through hominin molar morphology. Evolution 65:1772–1790

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2013) Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc R Soc B Biol Sci 280:20130575

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2014) Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun 5:4469

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A 112:14799–14804

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2016) The heritability of chimpanzee and human brain asymmetry. Proc R Soc B Biol Sci 283:20161319

    Article  Google Scholar 

  • Gonzalez PN, Barbeito-Andrés J, D’Addona LA et al (2016) Technical note: performance of semi and fully automated approaches for registration of 3D surface coordinates in geometric morphometric studies. Am J Phys Anthropol 160:169–178

    Article  Google Scholar 

  • Gronenschild EHBM, Habets P, Jacobs HIL et al (2012) The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PLoS One 7:e38234

    Article  Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin J-J (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922

    Article  Google Scholar 

  • Hopkins WD, Meguerditchian A, Coulon O et al (2014) Evolution of the central sulcus morphology in primates. Brain Behav Evol 84:19–30

    Article  Google Scholar 

  • Jenkinson M, Beckmann CF, Behrens TEJ et al (2012) FSL. NeuroImage 62:782–790

    Article  Google Scholar 

  • Keller SS, Highley JR, Garcia-Finana M et al (2007) Sulcal variability, stereological measurement and asymmetry of Broca’s area on MR images. J Anat 211:534–555

    Google Scholar 

  • Keller SS, Deppe M, Herbin M, Gilissen E (2012) Variability and asymmetry of the sulcal contours defining Broca’s area homologue in the chimpanzee brain. J Comp Neurol 520:1165–1180

    Article  Google Scholar 

  • Klingenberg CP (2008) Novelty and “homology-free” morphometrics: what’s in a name? Evol Biol 35:186–190

    Article  Google Scholar 

  • Klingenberg CP, Wetherill L, Rogers J et al (2010) Prenatal alcohol exposure alters the patterns of facial asymmetry. Alcohol 44:649–657

    Article  Google Scholar 

  • Kochunov P, Mangin JF, Coyle T et al (2005) Age-related morphology trends of cortical sulci. Hum Brain Mapp 26:210–220

    Article  Google Scholar 

  • Marcus DS, Harwell J, Olsen T et al (2011) Informatics and data mining tools and strategies for the human connectome project. Front Neuroinform. doi:10.3389/fninf.2011.00004

  • McAuliffe MJ, Lalonde FM, McGarry D, et al (2001) Medical image processing, analysis and visualization in clinical research. In: 14th IEEE Symposium on Computer-Based Medical Systems, 2001. CBMS 2001. Proceedings, pp 381–386

    Google Scholar 

  • Mota B, Herculano-Houzel S (2015) Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349:74–77

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Article  Google Scholar 

  • Ono M, Kubick S, Abernathey C (1990) Atlas of the cerebral sulci. Thieme, Stuttgart

    Google Scholar 

  • Oxnard CE (2004) Brain evolution: mammals, primates, chimpanzees, and humans. Int J Primatol 25:1127–1158

    Article  Google Scholar 

  • Polly PD (2008) Developmental dynamics and G-matrices: can morphometric spaces be used to model phenotypic evolution? Evol Biol 35:83–96

    Article  Google Scholar 

  • Pomidor BJ, Makedonska J, Slice DE (2016) A landmark-free method for three-dimensional shape analysis. PLoS One 11:e0150368

    Article  Google Scholar 

  • Sherwood CC, Broadfield DC, Holloway RL et al (2003) Variability of Broca’s area homologue in African great apes: implications for language evolution. Anat Rec 271A:276–285

    Article  Google Scholar 

  • Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B Biol Sci 280:20130269

    Article  Google Scholar 

  • Smaers JB, Steele J, Zilles K (2011) Modeling the evolution of cortico-cerebellar systems in primates. Ann N Y Acad Sci 1225:176–190

    Article  Google Scholar 

  • Sowell ER, Thompson PM, Rex D et al (2002) Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices. Cereb Cortex 12:17–26

    Article  Google Scholar 

  • Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol (Basel) 35:1–29

    Article  Google Scholar 

  • Steppan SJ, Phillips PC, Houle D (2002) Comparative quantitative genetics: evolution of the G matrix. Trends Ecol Evol 17:320–327

    Article  Google Scholar 

  • Tallinen T, Chung JY, Rousseau F et al (2016) On the growth and form of cortical convolutions. Nat Phys 12:588–593

    Article  Google Scholar 

  • Van Essen DC (2005) A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28:635–662

    Article  Google Scholar 

  • Van Essen DC, Drury HA, Joshi S, Miller MI (1998) Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci 95:788–795

    Article  Google Scholar 

  • Van Essen DC, Drury HA, Dickson J et al (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inform Assoc 8:443–459

    Article  Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL et al (2012) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22:2241–2262

    Article  Google Scholar 

  • Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79

    Article  Google Scholar 

  • Whiting B, Barton R (2003) The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol 44:3–10

    Article  Google Scholar 

  • Zilles K, Amunts K (2013) Individual variability is not noise. Trends Cogn Sci 17:153–155

    Article  Google Scholar 

  • Zlatkina V, Petrides M (2010) Morphological patterns of the postcentral sulcus in the human brain. J Comp Neurol 518:3701–3724

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Emiliano Bruner, Naomichi Ogihara, and Hiroki Tanabe for their invitation to contribute to this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Gómez-Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Gómez-Robles, A., Reyes, L.D., Sherwood, C.C. (2018). Landmarking Brains. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics