Skip to main content

Fossil Primate Endocasts: Perspectives from Advanced Imaging Techniques

  • Chapter
  • First Online:
Digital Endocasts

Abstract

Compared to their putative insectivore-like ancestors, extant primates show an enlarged brain relative to body weight, a larger neocortex and proportionally decreased olfactory bulbs. Besides hypotheses based on the comparative neuroanatomy of extant taxa, the only direct evidence documenting such long-term evolutionary history is provided by fossil endocasts. However, due to the unpredictable yet unavoidable impact of taphonomic processes, the reliability of data from the fossil record is complicated by the nature of the investigated structures themselves. Nonetheless, palaeoneurology has recently enlarged its traditional investigative toolkit by integrating descriptive morphology with advanced methods of high-resolution 3D imaging and computing. In addition to the development of digital restoration techniques, the introduction of analytical methods for investigating topographic differences in morphostructural organization and quantitatively characterizing intra- and interspecific variation patterns provides new possibilities for the study of the primate fossil record, especially for assessing brain evolutionary tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  Google Scholar 

  • Armstrong E, Falk D (1982) Primate brain evolution: methods and concepts. Plenum Press, New York

    Book  Google Scholar 

  • Barton RA (1998) Visual specialization and brain evolution in primates. Proc Biol Sci 265:1933–1937

    Article  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  Google Scholar 

  • Bayly P, Taber L, Kroenke C (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29:568–581

    Article  Google Scholar 

  • Beaudet A (2015) Caractérisation des Structures Crânio-Dentaires Internes des Cercopithécoïdes et Etude Diachronique de leurs Variations Morphologiques dans la Séquence Plio-Pléistocène Sud-Africaine. PhD dissertation, Université de Toulouse

    Google Scholar 

  • Beaudet A, Dumoncel J, de Beer F, Duployer B, Durrleman S, Gilissen E, Hoffman J, Tenailleau C, Thackeray JF, Braga J (2016) Morphoarchitectural variation in South African fossil cercopithecoid endocasts. J Hum Evol 101:65–78

    Article  Google Scholar 

  • Benazzi S, Bookstein FL, Strait DS, Weber GW (2011) A new OH5 reconstruction with an assessment of its uncertainty. J Hum Evol 61:75–88

    Article  Google Scholar 

  • Brain CK (1981) The hunters of the hunted? An introduction to African cave Taphonomy. University of Chicago Press, Chicago

    Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  Google Scholar 

  • Bruner E, Mantini S, Ripani M (2009) Landmark-based analysis of the morphological relationship between endocranial shape and traces of the middle meningeal vessels. Anat Rec 292:518–527

    Article  Google Scholar 

  • Connolly CJ (1950) External morphology of the primate brain. C.C. Thomas, Springfield

    Google Scholar 

  • de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of the mammalian brain. Nature 409:710–714

    Article  Google Scholar 

  • Dumoncel J, Durrleman S, Braga J, Jessel J-P, Subsol G (2014) Landmark-free 3D method for comparison of fossil hominins and hominids based on endocranium and EDJ shapes. Am J Phys Anthropol 153(suppl 56):110 (abstract)

    Google Scholar 

  • Durrleman S (2010) Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. PhD dissertation, Université Nice-Sophia Antipolis

    Google Scholar 

  • Durrleman S, Pennec X, Trouvé A, Ayache N, Braga J (2012a) Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J Hum Evol 62:74–88

    Article  Google Scholar 

  • Durrleman S, Prastawa M, Korenberg JR, Joshi S, Trouvé A, Gerig G (2012b) Topology preserving atlas construction from shape data without correspondence using sparse parameters. In: Ayache N, Delingette H, Golland P, Mori K (eds) MICCAI 2012, Part III. LNCS, vol 7512. Springer, Heidelberg, pp 223–230

    Google Scholar 

  • Falk D (1981) Sulcal patterns of fossil Theropithecus baboons: phylogenetic and functional implications. Int J Primatol 2:57–69

    Article  Google Scholar 

  • Falk D (1982) Mapping fossil endocasts. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum Publishing Company, New York, pp 217–226

    Chapter  Google Scholar 

  • Falk D (2009) The natural endocast of Taung (Australopithecus africanus): insights from the unpublished papers of Raymond Arthur Dart. Am J Phys Anthropol 49:49–65

    Article  Google Scholar 

  • Falk D (2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front Hum Neurosci 8:134

    Article  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  • Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980

    Article  Google Scholar 

  • Freedman L (1957) The fossil Cercopithecoidea of South Africa. Ann Transv Mus 23:121–262

    Google Scholar 

  • Freedman L (1961) New cercopithecoid fossils, including a new species, from Taung, Cape Province, South Africa. Ann S Afr Mus 46:1–14

    Google Scholar 

  • Freedman L (1976) South African fossil Cercopithecoidea: a re-assessment including a description of new material from Makapansgat, Sterkfontein and Taung. J Hum Evol 5:297–315

    Article  Google Scholar 

  • Gazin CL (1965) An endocranial cast of the Bridger middle Eocene primate Smilodectes gracilis. Smithson Misc Coll 149:1–14

    Google Scholar 

  • Gilissen E (2001) Structural symmetries and asymmetries in human and chimpanzee brains. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 187–215

    Chapter  Google Scholar 

  • Glaunès JA, Joshi S (2006) Template estimation from unlabeled point set data and surfaces for computational anatomy. In: Pennec X, Joshi S (eds) Proceedings of the international workshop on the Mathematical Foundations of Computational Anatomy. Copenhagen, pp 29–39

    Google Scholar 

  • Gómez-Robles A, Hopkins D, Sherwood C (2013) Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc R Soc B Biol Sci 280:20130575

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins D, Sherwood CC (2014) Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Comm 5:4469

    Article  Google Scholar 

  • Gonzales LA, Benefit BR, McCrossin ML, Spoor F (2015) Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in old world monkeys. Nat Comm 6:7580

    Article  Google Scholar 

  • Gunz P (2015) Computed tools for paleoneurology. In: Bruner E (ed) Human paleoneurology. Springer, Zurich, pp 39–55

    Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein, FL, Weber GW (2004) Computer-aided reconstruction of incomplete human crania using statistical and geometrical estimation methods. Enter the past: computer applications and quantitative methods in archaeology. BAR International Series, Oxford, pp 96–98

    Google Scholar 

  • Gunz P, Mitteroecker P, Neubauer S, Weber GW, Bookstein FL (2009) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57:48–62

    Article  Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210:411–417

    Article  Google Scholar 

  • Hill WCO (1972) Evolutionary biology of the primates. Academic, London

    Google Scholar 

  • Holloway RL (1978) The relevance of endocasts for studying primate brain evolution. In: Noback CR (ed) Sensory systems of primates. Plenum Press, New York, pp 181–200

    Chapter  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: brain endocasts – the paleoneurological evidence. Wiley-Liss, New York

    Book  Google Scholar 

  • Kaas JH (2002) Convergences in the modular and areal organization of the forebrain of mammals: implications for the reconstruction of forebrain evolution. Brain Behav Evol 59:262–272

    Article  Google Scholar 

  • Kaas JH (2006) Evolution of the neocortex. Curr Biol 16:910–914

    Article  Google Scholar 

  • Kobayashi Y, Matsui T, Haizuka Y, Ogihara N, Hirai N, Matsumura G (2014) Cerebral sulci and gyri observed on macaque endocasts. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 131–137

    Chapter  Google Scholar 

  • Le Gros Clark WE (1971) The antecedents of man: an introduction to the evolution of the primates. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Le Gros Clark WE, Cooper DM, Zuckerman S (1936) The endocranial cast of the chimpanzee. J Roy Anthropol Inst 66:249–268

    Google Scholar 

  • Leakey LSB, Tobias PV, Napier JR (1964) A new species of genus Homo from Olduvai Gorge. Nature 202:7–9

    Article  Google Scholar 

  • Meyer F, Beucher S (1990) Morphological segmentation. J Vis Commun Image Represent 1:21–46

    Article  Google Scholar 

  • Neubauer S (2014) Endocasts: possibilities and limitations for the interpretation of human brain evolution. Brain Behav Evol 84:117–134

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Article  Google Scholar 

  • Orliac MJ, Ladevèze S, Gingerich PD, Lebrun R, Smith T (2014) Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain. Proc R Soc B 281:20132792

    Article  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991a) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991b) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310:475–506

    Article  Google Scholar 

  • Radinsky L (1967) The oldest primate endocast. Am J Phys Anthropol 27:385–388

    Article  Google Scholar 

  • Radinsky L (1970) The fossil evidence of prosimian brain evolution. In: Noback CR, Montagna W (eds) Primate brain. Appleton-Century-Croft, New York, pp 209–224

    Google Scholar 

  • Radinsky L (1973) Aegyptopithecus endocasts: oldest record of a pongid brain. Am J Phys Anthropol 39:239–247

    Article  Google Scholar 

  • Radinsky L (1974) The fossil evidence of anthropoid brain evolution. Am J Phys Anthropol 41:15–28

    Article  Google Scholar 

  • Radinsky L (1975) Primate brain evolution. Am Sci 63:656–663

    Google Scholar 

  • Radinsky L (1982) Some cautionary notes on making inferences about relative brain size. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum, New York, pp 29–37

    Chapter  Google Scholar 

  • Rakic P, Kornack DR (2001) Neocortical expansion and elaboration during primate evolution: a view from neuroembryology. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 30–56

    Chapter  Google Scholar 

  • Roerdink JBTM, Meijster A (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fund Inform 41:187–228

    Google Scholar 

  • Rogers J, Kochunov P, Zilles K, Shelledy W, Lancaster J, Thompson P, Duggirala R, Blangero J, Fox PT, Glahn DC (2010) On the genetic architecture of cortical folding and brain volume in primates. NeuroImage 53:1103–1108

    Article  Google Scholar 

  • Ronan L, Fletcher PC (2015) From genes to folds: a review of cortical gyrification theory. Brain Struct Funct 220:2475–2483

    Article  Google Scholar 

  • Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5:272–276

    Article  Google Scholar 

  • Silcox MT, Benham AE, Bloch JI (2010) Endocasts of Microsyops (Microsyopidae, primates) and the evolution of the brain in primitive primates. J Hum Evol 58:505–521

    Article  Google Scholar 

  • Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between chimpanzee and human braincases. Vis Comput 23:743–751

    Article  Google Scholar 

  • Spoor F, Zonneveld F, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91:469–484

    Article  Google Scholar 

  • Stephan H, Baron G, Frahm HD (1991) Comparative brain research in mammals volume 1. Insectivora. Springer, New York

    Google Scholar 

  • Subsol G (1995) Construction Automatique d’Atlas Anatomiques Morphométriques à Partir d’Images Médicales Tridimensionnelles. PhD dissertation, Ecole Centrale de Paris

    Google Scholar 

  • Subsol G (1998) Crest lines for curve based warping. In: Toga A (ed) Brain warping. Academic Press, San Diego, pp 241–262

    Google Scholar 

  • Subsol G, Gesquière G, Braga J, Thackeray F (2010) 3D automatic methods to segment “virtual” endocasts: state of the art and future directions. Am J Phys Anthropol 141(suppl 50):226–227

    Google Scholar 

  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys. doi:10.1038/nphys3632

    Google Scholar 

  • Tallman M, Amenta N, Delson E, Frost SR, Ghosh D, Klukkert ZS, Morrow A, Sawyer GJ (2014) Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (primates, Cercopithecidae) as a test case. PLoS One 9(7):e100833

    Article  Google Scholar 

  • Toro R (2012) On the possible shapes of the brain. Evol Biol 39:600–612

    Article  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  Google Scholar 

  • von Bonin G, Bailey P (1961) Pattern of the cerebral isocortex. Primatologia II/2. Karger, New York

    Google Scholar 

  • Weber GW, Bookstein FL (2011) Virtual anthropology: a guide to a new interdisciplinary field. Springer, London

    Book  Google Scholar 

  • Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Jones EG, Peters A (eds) Cerebral cortex. Vol 8b. Comparative structure and evolution of cerebral cortex, Part II. Plenum Press, New York, pp 3–136

    Google Scholar 

  • Yoshizawa S, Belyaev A, Yokota H, Seidel HP (2007) Fast and faithful geometric algorithm for detecting crest lines on meshes. Proceedings of the 15th Pacific conference on computer graphics and applications, pp 231–237

    Google Scholar 

  • Yoshizawa S, Belyaev A, Yokota H, Seidel HP (2008) Fast, robust, and faithful methods for detecting crest lines on meshes. Comput Aided Geom D 25:545–560

    Article  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann HJ (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179:173–179

    Article  Google Scholar 

  • Zilles K, Kawashima R, Dabringhaus A, Fukuda H, Schormann T (2001) Hemispheric shape of European and Japanese brains: H 3-D MRI analysis of intersubject variability, ethnical, and gender differences. NeuroImage 13:262–271

    Article  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284

    Article  Google Scholar 

  • Zollikofer CPE (2002) A computational approach to paleoanthropology. Evol Anthropol 11:64–67

    Article  Google Scholar 

  • Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley Interscience, Hoboken

    Google Scholar 

  • Zollikofer CPE, Ponce de León MS, Martin RD (1998) Computer-assisted paleoanthropology. Evol Anthropol 6:41–54

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editors E. Bruner, N. Ogihara and H. Tanabe for their kind invitation to contribute this volume. We are indebted to J. Cuisin (Paris), G. Fleury (Toulouse), S. Potze (Pretoria), W. Wendelen (Tervuren) and B. Zipfel (Johannesburg) for having granted access to fossil and comparative materials under their care from the Ditsong National Museum of Natural History (Pretoria), the Musée d’Histoire naturelle in Toulouse, the Musée national d’Histoire naturelle (Paris), the Royal Museum for Central Africa (Tervuren) and the University of the Witwatersrand (Johannesburg). We also thank K. Carlson and T. Jashashvili (Johannesburg), G. Clément and M. Garcia-Sanz (Paris), B. Duployer and C. Tenailleau (Toulouse), L. Bam, F. de Beer and J. Hoffman (Pretoria) for microtomographic acquisitions performed at the Accès Scientifique à la Tomographie à Rayons-X (AST-RX) imagery platform set at the Musée national d’Histoire naturelle (Paris), at the French Research Federation FERMaT (Toulouse), at the Palaeosciences Centre of the University of the Witwatersrand (Johannesburg) and at the South African Nuclear Corporation (Pelindaba). For scientific contribution and/or discussion and comments to the results summarized in this study, we are especially grateful to J. Braga (Toulouse), L. Bruxelles (Toulouse), M. Cazenave (Pretoria), E. Delson (New York), J. Dumoncel (Toulouse), S. Durrleman (Paris), D. Ginibriere (Toulouse), J. Heaton (Birmingham), R. Holgate (Pretoria), N. Jablonski (University Park), J.P. Jessel (Toulouse), O. Kullmer (Frankfurt), R. Macchiarelli (Poitiers & Paris), M. Nakatsukasa (Kyoto), L. Pan (Toulouse), G. Subsol (Montpellier), D. Stratford (Johannesburg), J.F. Thackeray (Johannesburg) and C. Zanolli (Toulouse). The French research federation FERMaT (FR3089), the National Research Foundation (NRF) and Department of Science and Technology (DST) of South Africa are acknowledged for providing micro-X-ray tomography laboratory facilities. This work was granted access to the HPC resources of CALMIP supercomputing centre under the allocation 2015-[P1440] attributed to the laboratory AMIS (Toulouse). Research is supported by the Centre of Research and Higher Education (PRES) of Toulouse, the Midi-Pyrénées Region and the French Ministry of Foreign Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Beaudet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Beaudet, A., Gilissen, E. (2018). Fossil Primate Endocasts: Perspectives from Advanced Imaging Techniques. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics