Skip to main content

Drebrin and Spine Formation

  • Chapter
  • First Online:
Drebrin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1006))

Abstract

Dendritic spines are the postsynaptic receptive regions of most excitatory synapses in the central nervous system. Thus, spines are supposed to act as a fundamental unit for information processing of the brains. Previous studies have demonstrated the roles of drebrin in the formation of dendritic spines and in the recruitment of synaptic proteins to postsynaptic sites. Further, a live imaging study has revealed the unique dynamics of drebrin in dendritic spines, which help to understand how drebrin is involved in dendritic spine formation. This review will provide a basic knowledge about dendritic spine and overview recent progresses in understanding of the roles of drebrin in dendritic spine morphogenesis and synaptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20(12):4545–4554

    CAS  PubMed  Google Scholar 

  • Aoki C, Kojima N, Sabaliauskas N, Shah L, Ahmed TH, Oakford J, Ahmed T, Yamazaki H, Hanamura K, Shirao T (2009) Drebrin a knockout eliminates the rapid form of homeostatic synaptic plasticity at excitatory synapses of intact adult cerebral cortex. J Comp Neurol 517(1):105–121. doi:10.1002/cne.22137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araya R, Jiang J, Eisenthal KB, Yuste R (2006) The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 103(47):17961–17966. doi:10.1073/pnas.0608755103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada H, Uyemura K, Shirao T (1994) Actin-binding protein, drebrin, accumulates in submembranous regions in parallel with neuronal differentiation. J Neurosci Res 38(2):149–159. doi:10.1002/jnr.490380205

    Article  CAS  PubMed  Google Scholar 

  • Biou V, Brinkhaus H, Malenka RC, Matus A (2008) Interactions between drebrin and Ras regulate dendritic spine plasticity. Eur J Neurosci 27(11):2847–2859. doi:10.1111/j.1460-9568.2008.06269.x

    Article  PubMed  Google Scholar 

  • Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N Jr, Ashe KH, Frautschy SA, Cole GM (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron 43(5):633–645. doi:10.1016/j.neuron.2004.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, Shirao T, Aoki C, Huerta PT (2006) AMPA receptor downscaling at the onset of Alzheimer's disease pathology in double knockin mice. Proc Natl Acad Sci U S A 103(9):3410–3415. doi:10.1073/pnas.0507313103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, Nicoll RA (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408(6815):936–943. doi:10.1038/35050030

    Article  CAS  PubMed  Google Scholar 

  • Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5):929–942

    Article  CAS  PubMed  Google Scholar 

  • Cohen RS, Chung SK, Pfaff DW (1985) Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol 5(3):271–284

    Article  CAS  PubMed  Google Scholar 

  • Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ (2006) Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol 65(6):592–601

    Article  CAS  PubMed  Google Scholar 

  • Crump FT, Dillman KS, Craig AM (2001) cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J Neurosci 21(14):5079–5088

    CAS  PubMed  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16(9):2983–2994

    CAS  PubMed  Google Scholar 

  • DeFelipe J (2015) The dendritic spine story: an intriguing process of discovery. Front Neuroanat 9:14. doi:10.3389/fnana.2015.00014

    PubMed  PubMed Central  Google Scholar 

  • Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A 96(23):13438–13443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi S, Okabe S (2014) Structural dynamics of dendritic spines: molecular composition, geometry and functional regulation. Biochim Biophys Acta 1838(10):2391–2398. doi:10.1016/j.bbamem.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  • El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290(5495):1364–1368

    CAS  PubMed  Google Scholar 

  • Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 18(21):8900–8911

    CAS  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39(1):29–54

    Article  PubMed  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20(5):847–854

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci 3(9):887–894. doi:10.1038/78791

    Article  CAS  PubMed  Google Scholar 

  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38(3):447–460

    Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420(6917):812–816. doi:10.1038/nature01276

    Article  CAS  PubMed  Google Scholar 

  • Harigaya Y, Shoji M, Shirao T, Hirai S (1996) Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer's disease. J Neurosci Res 43(1):87–92. doi:10.1002/jnr.490430111

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371. doi:10.1146/annurev.ne.17.030194.002013

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Suzuki K, Shirao T (1998) Rapid conversion of drebrin isoforms during synapse formation in primary culture of cortical neurons. Brain Res Dev Brain Res 111(1):137–141

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Umemori H, Mishina M, Yamamoto T (1999) The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397(6714):72–76. doi:10.1038/16269

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2(12):880–888. doi:10.1038/35104061

    Article  CAS  PubMed  Google Scholar 

  • Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729. doi:10.1016/j.neuron.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Vandekerckhove J (1992) Structure and function of actin. Annu Rev Biophys Biomol Struct 21:49–76. doi:10.1146/annurev.bb.21.060192.000405

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26(7):360–368. doi:10.1016/S0166-2236(03)00162-0

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33(3):121–129. doi:10.1016/j.tins.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MB (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci 20(6):264–268

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290(5492):750–754

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5(10):771–781. doi:10.1038/nrn1517

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378(6552):85–88. doi:10.1038/378085a0

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Jeon S, Shin EY, Kim EG, Park J, Bae CD (2004) AMPA, not NMDA, activates RhoA GTPases and subsequently phosphorylates moesin. Exp Mol Med 36(1):98–102. doi:10.1038/emm.2004.14

    Article  CAS  PubMed  Google Scholar 

  • Kistner U, Wenzel BM, Veh RW, Cases-Langhoff C, Garner AM, Appeltauer U, Voss B, Gundelfinger ED, Garner CC (1993) SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem 268(7):4580–4583

    CAS  PubMed  Google Scholar 

  • Kobayashi C, Aoki C, Kojima N, Yamazaki H, Shirao T (2007) Drebrin a content correlates with spine head size in the adult mouse cerebral cortex. J Comp Neurol 503(5):618–626. doi:10.1002/cne.21408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis DM, Reese TS (1983) Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol 97(4):1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Mahadomrongkul V, Huerta PT, Shirao T, Aoki C (2005) Stability of the distribution of spines containing drebrin A in the sensory cortex layer I of mice expressing mutated APP and PS1 genes. Brain Res 1064(1-2):66–74. doi:10.1016/j.brainres.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283(5409):1923–1927

    Article  CAS  PubMed  Google Scholar 

  • Marrs GS, Green SH, Dailey ME (2001) Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci 4(10):1006–1013. doi:10.1038/nn717

    Article  CAS  PubMed  Google Scholar 

  • Mateos JM, Luthi A, Savic N, Stierli B, Streit P, Gahwiler BH, McKinney RA (2007) Synaptic modifications at the CA3-CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices. J Physiol 581(Pt 1):129–138. doi:10.1113/jphysiol.2006.120550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092. doi:10.1038/nn736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766. doi:10.1038/nature02617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci U S A 79(23):7590–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney RA, Capogna M, Durr R, Gahwiler BH, Thompson SM (1999) Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2(1):44–49. doi:10.1038/4548

    Article  CAS  PubMed  Google Scholar 

  • Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RG, Morrison JH, O'Dell TJ, Grant SG (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396(6710):433–439. doi:10.1038/24790

    Article  CAS  PubMed  Google Scholar 

  • Mizui T, Takahashi H, Sekino Y, Shirao T (2005) Overexpression of drebrin A in immature neurons induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large abnormal protrusions. Mol Cell Neurosci 30(4):630–638

    CAS  PubMed  Google Scholar 

  • Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16(7):2157–2163

    CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353. doi:10.1146/annurev.physiol.64.081501.160008

    Article  CAS  PubMed  Google Scholar 

  • Okabe S, Miwa A, Okado H (2001) Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J Neurosci 21(16):6105–6114

    CAS  PubMed  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7(10):1104–1112. doi:10.1038/nn1311

    Article  CAS  PubMed  Google Scholar 

  • Papa M, Segal M (1996) Morphological plasticity in dendritic spines of cultured hippocampal neurons. Neuroscience 71(4):1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Papa M, Bundman MC, Greenberger V, Segal M (1995) Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J Neurosci 15(1 Pt 1):1–11

    CAS  PubMed  Google Scholar 

  • Perez-Otano I, Ehlers MD (2005) Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28(5):229–238. doi:10.1016/j.tins.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  • Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23(18):7129–7142

    CAS  PubMed  Google Scholar 

  • Rao A, Craig AM (1997) Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19(4):801–812

    Article  CAS  PubMed  Google Scholar 

  • Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13(8):699–708. doi:10.1038/embor.2012.102

  • Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115–130

    Article  CAS  PubMed  Google Scholar 

  • Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115. doi:10.1016/j.conb.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  • Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51(2–4):92–104. doi:10.1016/j.neuint.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  • Shim KS, Lubec G (2002) Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer's disease and Down syndrome. Neurosci Lett 324(3):209–212

    Article  CAS  PubMed  Google Scholar 

  • Shirao T, González-Billault C (2013) Actin filaments and microtubules in dendritic spines. J Neurochem 126(2):155–164

    Google Scholar 

  • Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5(3):239–246. doi:10.1038/nn811

    Article  CAS  PubMed  Google Scholar 

  • Svitkina TM (2013) Ultrastructure of protrusive actin filament arrays. Curr Opin Cell Biol 25(5):574–581. doi:10.1016/j.ceb.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Sekino Y, Tanaka S, Mizui T, Kishi S, Shirao T (2003) Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis. J Neurosci 23(16):6586–6595

    CAS  PubMed  Google Scholar 

  • Takahashi H, Mizui T, Shirao T (2006) Down-regulation of drebrin A expression suppresses synaptic targeting of NMDA receptors in developing hippocampal neurones. J Neurochem 97(Suppl 1):110–115. doi:10.1111/j.1471-4159.2005.03536.x

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki H, Hanamura K, Sekino Y, Shirao T (2009) Activity of the AMPA receptor regulates drebrin stabilization in dendritic spine morphogenesis. J Cell Sci 122(Pt 8):1211–1219. doi:10.1242/jcs.043729

    Article  CAS  PubMed  Google Scholar 

  • Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2(7):618–624. doi:10.1038/10172

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Fukata M, Nicoll RA, Bredt DS (2004) Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 303(5663):1508–1511. doi:10.1126/science.1090262

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Adesnik H, Sekiguchi M, Zhang W, Wada K, Howe JR, Nicoll RA, Bredt DS (2005) Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435(7045):1052–1058. doi:10.1038/nature03624

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435. doi:10.1016/j.cell.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Durkin JP (1995) alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but not N-methyl-D-aspartate, activates mitogen-activated protein kinase through G-protein beta gamma subunits in rat cortical neurons. J Biol Chem 270(39):22783–22787

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Small DL, Stanimirovic DB, Morley P, Durkin JP (1997) AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389(6650):502–504. doi:10.1038/39062

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara Y, De Roo M, Muller D (2009) Dendritic spine formation and stabilization. Curr Opin Neurobiol 19(2):146–153. doi:10.1016/j.conb.2009.05.013

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44(5):749–757. doi:10.1016/j.neuron.2004.11.011

    Article  CAS  PubMed  Google Scholar 

  • Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17(1):91–102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Takahashi, H., Naito, Y. (2017). Drebrin and Spine Formation. In: Shirao, T., Sekino, Y. (eds) Drebrin. Advances in Experimental Medicine and Biology, vol 1006. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56550-5_10

Download citation

Publish with us

Policies and ethics