Skip to main content

Graphene: Synthesis and Functionalization

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Graphene, a two-dimensional honeycomb sheet composed of sp 2 hybridized carbon atoms, is a representative of atomically thin-layered materials and has been extensively studied since its discovery. The peculiar properties of graphene, such as ultra-high carrier mobility, mechanical strength, and so on, have tempted researchers to utilize them in the wide area from fundamental physics to industrial applications. The ways to fabricate graphene and to tune the properties of graphene are established to some extent in this decade. Here, we summarize the recent studies of graphene and its derivatives. As an introduction, the historical background of two-dimensional materials is reviewed briefly. The fascinating properties of graphene are then described, focusing on the mechanical and electronic properties. The fabrication methods on which the quality of graphene strongly depends are described mentioning the merits and flaws of each method. The functionalization of graphene is also explained as the way to tune the properties of graphene directly. Finally, we briefly introduce the graphene-related materials, the studies of which were also initiated by the isolation of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace P (1947) The band theory of graphite. Phys Rev 71:622

    Google Scholar 

  2. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51:1

    Google Scholar 

  3. Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954

    Article  CAS  Google Scholar 

  4. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193

    Google Scholar 

  5. Wilson JA, Di Salvo FJ, Mahajan S (1974) Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys Rev Lett 32:882

    Google Scholar 

  6. Saiki K, Yoshimi M, Tanaka S (1978) Modulation spectroscopy on the group IV and VI transition-metal dichalcogenides. Phys Status Solidi 88:607

    Google Scholar 

  7. Koma A, Sunouchi K, Miyajima T (1985) Summary Abstract: fabrication of ultrathin heterostructures with van der Waals epitaxy. J Vac Sci Technol B 3:724

    Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically Thin Carbon Films. Science 306:666

    Google Scholar 

  9. Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Making graphene visible. Appl Phys Lett 91:063124

    Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197

    Google Scholar 

  11. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Google Scholar 

  12. Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250

    Google Scholar 

  13. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155

    Google Scholar 

  14. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912

    Google Scholar 

  15. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. science 324:1312

    Google Scholar 

  16. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-Doping of graphene through electrothermal reactions with ammonia. Science 324:768

    Google Scholar 

  17. Cheng H, Shiue R-J, Tsai C-C, Wang W-H, Chen Y-T (2011) High-quality graphene p−n junctions via resist-free fabrication and solution-based noncovalent functionalization. ACS Nano 5:2051

    Google Scholar 

  18. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Google Scholar 

  19. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458

    Google Scholar 

  20. Lee C, Wei X, Kysar JWJJW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385

    Google Scholar 

  21. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Google Scholar 

  22. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Google Scholar 

  23. Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B 77:035427

    Google Scholar 

  24. Zhang Y, Jiang Z, Small JP, Purewal MS, Tan Y-W, Fazlollahi M, Chudow JD, Jaszczak JA, Stormer HL, Kim P (2006) Landau-level splitting in graphene in high magnetic fields. Phys Rev Lett 96:136806

    Google Scholar 

  25. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201

    Google Scholar 

  26. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379

    Google Scholar 

  27. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494

    Google Scholar 

  28. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571

    Google Scholar 

  29. Xiao D, Yao W, Niu Q (2007) Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett 99:236809

    Google Scholar 

  30. Gorbachev RV, Song JCW, Yu GL, Kretinin AV, Withers F, Cao Y, Mishchenko A, Grigorieva IV, Novoselov KS, Levitov LS, Geim AK (2014) Detecting topological currents in graphene superlattices. Science 346:448

    Google Scholar 

  31. Castro EV, Novoselov KS, Morozov SV, Peres NMR, dos Santos JMBL, Nilsson J, Guinea F, Geim AK, Neto AHC (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99:216802

    Google Scholar 

  32. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47

    Google Scholar 

  33. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51

    Google Scholar 

  34. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235

    Google Scholar 

  35. Hummer WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Google Scholar 

  36. Matsumoto M, Saito Y, Park C, Fukushima T, Aida T (2015) Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nat Chem 7:730

    Google Scholar 

  37. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563 (2008)

    Google Scholar 

  38. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624

    Google Scholar 

  39. Kusunoki M, Norimatsu W, Bao J, Morita K, Starke U (2015) Growth and features of epitaxial graphene on SiC. J Phys Soc Jpn 84:121014

    Google Scholar 

  40. Tanabe S, Sekine Y, Kageshima H, Nagase M, Hibino H (2011) Carrier transport mechanism in graphene on SiC(0001). Phys Rev B 84:115458

    Google Scholar 

  41. Hass J, Varchon F, Millán-Otoya JE, Sprinkle M, Sharma N, de Heer WA, Berger C, First PN, Magaud L, Conrad EH (2008) Why multilayer graphene on 4H−SiC (000¯1) behaves like a single sheet of graphene. Phys Rev Lett 100:125504

    Google Scholar 

  42. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203

    Google Scholar 

  43. Wu YQ, Ye PD, Capano MA, Xuan Y, Sui Y, Qi M, Cooper JA, Shen T, Pandey D, Prakash G, Reifenberger R (2008) Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett 92:092102

    Google Scholar 

  44. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706

    Google Scholar 

  45. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei SS, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443

    Google Scholar 

  46. Orofeo CM, Hibino H, Kawahara K, Ogawa Y, Tsuji M, Ikeda K, Mizuno S, Ago H (2012) Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50:2189

    Google Scholar 

  47. Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf Sci 43:493

    Google Scholar 

  48. Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406

    Google Scholar 

  49. Yu Q, Lian J, Siriponglert S, Li H, Chen YP, Pei S-S (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103

    Google Scholar 

  50. Coraux J, N’Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir(111). Nano Lett 8:565

    Google Scholar 

  51. Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261

    Google Scholar 

  52. Oznuluer T, Pince E, Polat EO, Balci O, Salihoglu O, Kocabas C (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101

    Google Scholar 

  53. Lee J-H, Lee EK, Joo W-J, Jang Y, Kim B-S, Lim JY, Choi S-H, Ahn SJ, Ahn JR, Park M-H, Yang C-W, Choi BL, Hwang S-W, Whang D (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344:286

    Google Scholar 

  54. Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268

    Google Scholar 

  55. Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919

    Google Scholar 

  56. Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069

    Google Scholar 

  57. Celebi K, Cole MT, Choi JW, Wyczisk F, Legagneux P, Rupesinghe N, Robertson J, Teo KBK, Park HG (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967

    Google Scholar 

  58. Wang Z-J, Weinberg G, Zhang Q, Lunkenbein T, Klein-Hoffmann A, Kurnatowska M, Plodinec M, Li Q, Chi L, Schloegl R, Willinger M (2015) Direct observation of graphene growth and associated copper substrate dynamics by in Situ scanning electron microscopy. ACS Nano 9:1506

    Google Scholar 

  59. Kidambi PR, Bayer BC, Blume R, Wang Z-J, Baehtz C, Weatherup RS, Willinger M-G, Schloegl R, Hofmann S (2013) Observing graphene grow: catalyst–graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769

    Google Scholar 

  60. Terasawa T, Saiki K (2015) Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene. Appl Phys Express 8:035101

    Google Scholar 

  61. Terasawa T, Saiki K (2015) Radiation-mode optical microscopy on the growth of graphene. Nat Commun 6:6834

    Google Scholar 

  62. Niu T, Zhou M, Zhang J, Feng Y, Chen W (2013) Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. J Am Chem Soc 135:8409

    Google Scholar 

  63. Puretzky AA, Geohegan DB, Pannala S, Rouleau CM, Regmi M, Thonnard N, Eres G (2013) Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition. Nanoscale 5:6507

    Google Scholar 

  64. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720

    Google Scholar 

  65. Hwang J, Kim M, Campbell D, Alsalman HA, Kwak JY, Shivaraman S, Woll AR, Singh AK, Hennig RG, Gorantla S, Rümmeli MH, Spencer MG (2013) van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385

    Google Scholar 

  66. Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014) Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J Am Chem Soc 136:6574

    Google Scholar 

  67. Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50:869

    Google Scholar 

  68. Terasawa T, Saiki K (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101

    Google Scholar 

  69. Wei D, Lu Y, Han C, Niu T, Chen W, Wee ATS (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chem Int Ed Engl 52:14121

    Google Scholar 

  70. Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S (2011) Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett 98:091502

    Google Scholar 

  71. Yamada T, Ishihara M, Kim J, Hasegawa M, Iijima S (2012) A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon 50:2615

    Google Scholar 

  72. Weatherup RS, Baehtz C, Dlubak B, Bayer BC, Kidambi PR, Blume R, Schloegl R, Hofmann S (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624

    Google Scholar 

  73. Tanaka H, Obata S, Saiki K (2013) Reduction of graphene oxide at the interface between a Ni layer and a SiO2 substrate. Carbon 59:472

    Google Scholar 

  74. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549

    Google Scholar 

  75. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601

    Google Scholar 

  76. Obata S, Tanaka H, Saiki K (2011) Reduction of a single layer graphene oxide film on Pt(111). Appl Phys Express 4:025102

    Google Scholar 

  77. Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191

    Google Scholar 

  78. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610

    Google Scholar 

  79. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: A two-dimensional hydrocarbon. Phys Rev B 75:153401

    Google Scholar 

  80. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10:3001

    Google Scholar 

  81. Cheng S-H, Zou K, Okino F, Gutierrez HR, Gupta A, Shen N, Eklund PC, Sofo JO, Zhu J (2010) Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys Rev B 81:205435

    Google Scholar 

  82. Withers F, Dubois M, Savchenko AK (2010) Electron properties of fluorinated single-layer graphene transistors. Phys Rev B 82:073403

    Google Scholar 

  83. Hamwi A (1996) Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications. J Phys Chem Solids 57:677

    Google Scholar 

  84. Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949

    Google Scholar 

  85. Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE (2009) Photochemical reactivity of graphene. J Am Chem Soc 131:17099

    Google Scholar 

  86. Liu L-H, Lerner MM, Yan M (2010) Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett 10:3754

    Google Scholar 

  87. An X, Simmons T, Shah R, Wolfe C, Lewis KM, Washington M, Nayak SK, Talapatra S, Kar S (2010) Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett 10:4295

    Google Scholar 

  88. Zhang S, Tang S, Lei J, Dong H, Ju H (2011) Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J Electroanal Chem 656:285

    Google Scholar 

  89. Ghosh A, Rao KV, George SJ, Rao CNR (2010) Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chem. Eur. J. 16:2700

    Google Scholar 

  90. Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745

    Google Scholar 

  91. Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612

    Google Scholar 

  92. Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277

    Google Scholar 

  93. Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning metal−graphene interaction by reactive intercalation. J Am Chem Soc 132:8175

    Google Scholar 

  94. Schumacher S, Huttmann F, Petrović M, Witt C, Förster DF, Vo-Van C, Coraux J, Martínez-Galera AJ, Sessi V, Vergara I, Rückamp R, Grüninger M, Schleheck N, Meyer zu Heringdorf F, Ohresser P, Kralj M, Wehling TO, Michely T (2014) Europium underneath graphene on Ir(111): intercalation mechanism, magnetism, and band structure. Phys Rev B 90:235437

    Google Scholar 

  95. Masuda Y, Norimatsu W, Kusunoki M (2015) Formation of a nitride interface in epitaxial graphene on SiC (0001). Phys Rev B 91:075421

    Google Scholar 

  96. Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U (2009) Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys Rev Lett 103:246804

    Google Scholar 

  97. Bult JB, Crisp R, Perkins CL, Blackburn JL (2013) Role of opants in long-range charge carrier transport for p-type and n-type graphene transparent conducting thin films. ACS Nano 7:7251

    Google Scholar 

  98. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21:4726

    Google Scholar 

  99. Akada K, Terasawa T, Imamura G, Obata S, Saiki K (2014) Control of work function of graphene by plasma assisted nitrogen doping. Appl Phys Lett 104:131602

    Google Scholar 

  100. Schiros T, Nordlund D, Pálová L, Prezzi D, Zhao L, Kim KS, Wurstbauer U, Gutiérrez C, Delongchamp D, Jaye C, Fischer D, Ogasawara H, Pettersson LGM, Reichman DR, Kim P, Hybertsen MS, Pasupathy AN (2012) Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett 12:4025

    Google Scholar 

  101. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170

    Google Scholar 

  102. Sheng Z-H, Gao H-L, Bao W-J, Wang F-B, Xia X-H (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390

    Google Scholar 

  103. Wu T, Shen H, Sun L, Cheng B, Liu B, Shen J (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36:1385

    Google Scholar 

  104. Imamura G, Chang CW, Nabae Y, Kakimoto M, Miyata S, Saiki K (2012) Electronic structure and graphenization of hexaphenylborazine. J Phys Chem C 116:16305

    Google Scholar 

  105. Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10:4975

    Google Scholar 

  106. Kim YA, Fujisawa K, Muramatsu H, Hayashi T, Endo M, Fujimori T, Kaneko K, Terrones M, Behrends J, Eckmann A, Casiraghi C, Novoselov KS, Saito R, Dresselhaus MS (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293

    Google Scholar 

  107. Pan L, Que Y, Chen H, Wang D, Li J, Shen C, Xiao W, Du S, Gao H, Pantelides ST (2015) Room-temperature, low-barrier boron doping of graphene. Nano Lett 15:6464

    Google Scholar 

  108. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films For lithium battery application. ACS Nano 4:6337

    Google Scholar 

  109. Gebhardt J, Koch RJ, Zhao W, Höfert O, Gotterbarm K, Mammadov S, Papp C, Görling A, Steinrück H-P, Seyller T (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B 87:155437

    Google Scholar 

  110. Cattelan M, Agnoli S, Favaro M, Garoli D, Romanato F, Meneghetti M, Barinov A, Dudin P, Granozzi G (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490

    Google Scholar 

  111. Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E (2015) Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun 6:8098

    Google Scholar 

  112. Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2:661

    Google Scholar 

  113. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877

    Google Scholar 

  114. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, Ultrasmooth graphene nanoribbon semiconductors. Science 319:1229

    Google Scholar 

  115. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470

    Google Scholar 

  116. Hayashi K, Sato S, Ikeda M, Kaneta C, Yokoyama N (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492

    Google Scholar 

  117. Ago H, Tanaka I, Ogawa Y, Yunus RM, Tsuji M, Hibino H (2013) Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. ACS Nano 7:10825

    Google Scholar 

  118. Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727

    Google Scholar 

  119. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734

    Google Scholar 

  120. Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, Wu H, Guo S, Zhang J (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6:6592

    Google Scholar 

  121. Yan X, Cui X, Li L-S (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132:5944

    Google Scholar 

  122. Güttinger J, Molitor F, Stampfer C, Schnez S, Jacobsen A, Dröscher S, Ihn T, Ensslin K (2012) Transport through graphene quantum dots. Rep Prog Phys 75:126502

    Google Scholar 

  123. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333

    Google Scholar 

  124. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphenequantum dots for bioimaging applications. Chem Commun 47:6858

    Google Scholar 

  125. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419

    Google Scholar 

  126. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451

    Google Scholar 

  127. Kim J, Kwon S, Cho D-H, Kang B, Kwon H, Kim Y, Park SO, Jung GY, Shin E, Kim W-G, Lee H, Ryu GH, Choi M, Kim TH, Oh J, Park S, Kwak SK, Yoon SW, Byun D, Lee Z, Lee C (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:8294

    Google Scholar 

  128. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong J (2012) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161

    Google Scholar 

  129. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108:155501

    Google Scholar 

  130. De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Le Lay G (2010) Evidence of graphene-like electronic signature in silicene nanoribbons. Appl Phys Lett 96:261905

    Google Scholar 

  131. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227

    Google Scholar 

  132. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501

    Google Scholar 

  133. Koenig SP, Doganov RA, Schmidt H, Castro AH Neto, Özyilmaz B (2014) Electric field effect in ultrathin black phosphorus. Appl Phys Lett 104:103106

    Google Scholar 

  134. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8:4033

    Google Scholar 

  135. Bianco E, Butler S, Jiang S, Restrepo OD, Windl W, Goldberger JE (2013) Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7:4414

    Google Scholar 

  136. Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, Sonnet P, Pirri C (2015) Continuous germanene layer on Al(111). Nano Lett 15:2510

    Google Scholar 

  137. Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:095002

    Google Scholar 

  138. Zhu F-F, Chen W-J, Xu Y, Gao C-L, Guan D-D, Liu C-H, Qian D, Zhang S-C, Jia J-F (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020

    Google Scholar 

  139. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317:932

    Google Scholar 

  140. Lee G-H, Yu Y-J, Lee C, Dean C, Shepard KL, Kim P, Hone J (2011) Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl Phys Lett 99:243114

    Google Scholar 

  141. Zhang Y, Weng X, Li H, Li H, Wei M, Xiao J, Liu Z, Chen M, Fu Q, Bao X (2015) Hexagonal boron nitride cover on Pt(111): a new route to tune molecule–metal interaction and metal-catalyzed reactions. Nano Lett 15:3616

    Google Scholar 

  142. Sutter P, Lahiri J, Zahl P, Wang B, Sutter E (2013) Scalable Synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett 13:276

    Google Scholar 

  143. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209

    Google Scholar 

  144. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766

    Google Scholar 

  145. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263

    Google Scholar 

  146. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Google Scholar 

  147. Zeng H, Dai J, Yao W, Xiao D, Cui X (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490

    Google Scholar 

  148. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74

    Google Scholar 

  149. Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson BI, Terrones H, Terrones M, Tay BK, Lou J, Pantelides ST, Liu Z, Zhou W, Ajayan PM (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135

    Google Scholar 

  150. Levendorf MP, Kim C-J, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627

    Google Scholar 

  151. Huang C, Wu S, Sanchez AM, Peters JJP, Beanland R, Ross JS, Rivera P, Yao W, Cobden DH, Xu X (2014) Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat Mater 13:1096

    Google Scholar 

  152. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722

    Google Scholar 

  153. Wang L, Meric I, Huang P, Gao Q, Gao Y (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614

    Google Scholar 

  154. Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J, Ojeda-Aristizabal C, Bechtel HA, Martin MC, Zettl A, Analytis J, Wang F (2015) Topological valley transport at bilayer graphene domain walls. Nature 520:650

    Google Scholar 

  155. Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z (2015) Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat Commun 6:6835

    Google Scholar 

  156. Koma A (1992) Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216:72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichiro Saiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Terasawa, To., Saiki, K. (2017). Graphene: Synthesis and Functionalization. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_4

Download citation

Publish with us

Policies and ethics