Skip to main content

Approaching a Unified Theory for Particle-Induced Inflammation

  • Chapter
Biological Effects of Fibrous and Particulate Substances

Abstract

Particles such as silica, asbestos, and engineered nanomaterials (ENM) that fall within a relatively small size range (<100 nm in at least one dimension) are known to have serious health consequences following exposure. Studies aimed at determining the mechanisms of toxicity for environmental particles have been ongoing for decades. However, the recent explosion of ENM into the market has resulted in the emergence of many recent studies aimed at determining the mechanisms underlying the pathologies associated with certain forms of ENM. In this chapter, we propose that many of the principles that have guided the toxicity studies of environmental particles may also apply to bioactive ENM. In fact, the initiating event for all downstream pathologies caused by exposure to both bioactive ENM and environmental particles appears to be lysosomal membrane permeabilization (LMP). Therefore, focusing on LMP as the “unifying” principle for particle toxicity studies may allow the field to advance at an increased pace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delgado GC. Economics and governance of nanomaterials: potential and risks. Technol Soc. 2010;32(2):137–44.

    Article  Google Scholar 

  2. Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv. 2012;2012:389485. doi:10.1155/2012/389485.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Donaldson K, Seaton A. A short history of the toxicology of inhaled particles. Part Fibre Toxicol. 2012;9:13. doi:10.1186/1743-8977-9-13.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, et al. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981;67(5):965–75.

    CAS  PubMed  Google Scholar 

  5. Bignon J, Saracci R, Touray JC. Introduction: INSERM-IARC-CNRS workshop on biopersistence of respirable synthetic fibers and minerals. Environ Health Perspect. 1994;102 Suppl 5:3–5.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Oberdorster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 2007;1(1):2–25.

    Article  CAS  Google Scholar 

  7. Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–99. doi:10.1016/j.jconrel.2014.06.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarrazin S, Wilson B, Sly WS, Tor Y, Esko JD. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes. Mol Ther. 2010;18(7):1268–74. doi:10.1038/mt.2010.78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Seydoux E, Rothen-Rutishauser B, Nita IM, Balog S, Gazdhar A, Stumbles PA, et al. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. Int J Nanomedicine. 2014;9:3885–902. doi:10.2147/IJN.S64353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Niemi K, Teirila L, Lappalainen J, Rajamaki K, Baumann MH, Oorni K, et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186(11):6119–28. doi:10.4049/jimmunol.1002843.

    Article  CAS  PubMed  Google Scholar 

  11. Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L, Bakke SS, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192(6):2837–45. doi:10.4049/jimmunol.1302484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gasse P, Riteau N, Charron S, Girre S, Fick L, Petrilli V, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179(10):903–13. doi:10.1164/rccm.200808-1274OC.

    Article  CAS  PubMed  Google Scholar 

  13. Warheit DB, McHugh TA, Hartsky MA. Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand J Work Environ Health. 1995;21 Suppl 2:19–21.

    CAS  PubMed  Google Scholar 

  14. Luo S, Liu X, Mu S, Tsai SP, Wen CP. Asbestos related diseases from environmental exposure to crocidolite in Da-yao, China. I. Review of exposure and epidemiological data. Occup Environ Med. 2003;60(1):35–41; discussion −2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gibbs GW, Berry G. Mesothelioma and asbestos. Regul Toxicol Pharmacol. 2008;52(1 Suppl):S223–31. doi:10.1016/j.yrtph.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  16. Sen D. Working with asbestos and the possible health risks. Occup Med (Lond). 2015;65(1):6–14. doi:10.1093/occmed/kqu175.

    Article  CAS  Google Scholar 

  17. Maxim LD, McConnell EE. A review of the toxicology and epidemiology of wollastonite. Inhal Toxicol. 2005;17(9):451–66. doi:10.1080/08958370591002030.

    Article  CAS  PubMed  Google Scholar 

  18. Maxim LD, Niebo R, Utell MJ, McConnell EE, Larosa S, Segrave AM. Wollastonite toxicity: an update. Inhal Toxicol. 2014;26(2):95–112. doi:10.3109/08958378.2013.857372.

    Article  CAS  PubMed  Google Scholar 

  19. Hamilton RF, Iyer LL, Holian A. Asbestos induces apoptosis in human alveolar macrophages. Am J Physiol. 1996;271(5 Pt 1):L813–19.

    CAS  PubMed  Google Scholar 

  20. Sandberg WJ, Lag M, Holme JA, Friede B, Gualtieri M, Kruszewski M, et al. Comparison of non-crystalline silica nanoparticles in IL-1beta release from macrophages. Part Fibre Toxicol. 2012;9:32. doi:10.1186/1743-8977-9-32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(Pt 9):1905–12. doi:10.1242/jcs.091181.

    Article  CAS  PubMed  Google Scholar 

  22. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495–531.

    Article  PubMed  Google Scholar 

  23. Prchla E, Plank C, Wagner E, Blaas D, Fuchs R. Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2. J Cell Biol. 1995;131(1):111–23.

    Article  CAS  PubMed  Google Scholar 

  24. Sandvig K, van Deurs B. Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther. 2005;12(11):865–72. doi:10.1038/sj.gt.3302525.

    Article  CAS  PubMed  Google Scholar 

  25. Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes and oxidative stress in aging and apoptosis. Biochim Biophys Acta. 2008;1780(11):1291–303. doi:10.1016/j.bbagen.2008.01.009.

    Article  CAS  PubMed  Google Scholar 

  26. Groth-Pedersen L, Aits S, Corcelle-Termeau E, Petersen NH, Nylandsted J, Jaattela M. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells. PLoS ONE. 2012;7(10):e45381. doi:10.1371/journal.pone.0045381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Oberle C, Huai J, Reinheckel T, Tacke M, Rassner M, Ekert PG, et al. Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ. 2010;17(7):1167–78. doi:10.1038/cdd.2009.214.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao M, Brunk UT, Eaton JW. Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett. 2001;509(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L, et al. Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A. 2002;99(9):6286–91. doi:10.1073/pnas.092135599.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Suzuki Y. Interaction of asbestos with alveolar cells. Environ Health Perspect. 1974;9:241–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Johnson NF, Davies R. Effect of asbestos on the P388D1 macrophagelike cell line: preliminary ultrastructural observations. Environ Health Perspect. 1983;51:109–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hamilton RF, Buford M, Xiang C, Wu N, Holian A. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol. 2012;24(14):995–1008.

    Google Scholar 

  33. Kopylev L, Christensen KY, Brown JS, Cooper GS. A systematic review of the association between pleural plaques and changes in lung function. Occup Environ Med. 2015;72(8):606–14. doi:10.1136/oemed-2014-102468.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Norbet C, Joseph A, Rossi SS, Bhalla S, Gutierrez FR. Asbestos-related lung disease: a pictorial review. Curr Probl Diagn Radiol. 2015;44(4):371–82. doi:10.1067/j.cpradiol.2014.10.002.

    Article  PubMed  Google Scholar 

  35. Markowitz SB, Levin SM, Miller A, Morabia A. Asbestos, asbestosis, smoking, and lung cancer. New findings from the North American insulator cohort. Am J Respir Crit Care Med. 2013;188(1):90–6. doi:10.1164/rccm.201302-0257OC.

    Article  PubMed  Google Scholar 

  36. Bianchi C, Bianchi T. Global mesothelioma epidemic: trend and features. Indian J Occup Environ Med. 2014;18(2):82–8. doi:10.4103/0019-5278.146897.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bounin A, Charbotel B, Fervers B, Bergeret A. Professional risk factors associated with the cancer of the ovary. Lit Rev Bull Cancer. 2014;101(12):1089–108. doi:10.1684/bdc.2014.1978.

    Google Scholar 

  38. Pailes WH, Judy DJ, Resnick H, Castranova V. Relative effects of asbestos and wollastonite on alveolar macrophages. J Toxicol Environ Health. 1984;14(4):497–510. doi:10.1080/15287398409530601.

    Article  CAS  PubMed  Google Scholar 

  39. Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder A, Fazlollahi F, et al. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect. 2013;121(6):683–90. doi:10.1289/ehp.1306561.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol. 2008;21(9):1871–7. doi:10.1021/tx800179f.

    Article  CAS  PubMed  Google Scholar 

  41. Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 2011;5(9):6861–70. doi:10.1021/nn200595c.

    Article  CAS  PubMed  Google Scholar 

  42. Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:27. doi:10.1186/1743-8977-8-27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, et al. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology. 2011;5(4):557–67. doi:10.3109/17435390.2010.539713.

    Article  CAS  PubMed  Google Scholar 

  44. Fouchier F, Mego JL, Dang J, Simon C. Thyroid lysosomes: the stability of the lysosomal membrane. Eur J Cell Biol. 1983;30(2):272–8.

    CAS  PubMed  Google Scholar 

  45. Appelqvist H, Nilsson C, Garner B, Brown AJ, Kagedal K, Ollinger K. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. Am J Pathol. 2011;178(2):629–39. doi:10.1016/j.ajpath.2010.10.030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Appelqvist H, Sandin L, Bjornstrom K, Saftig P, Garner B, Ollinger K, et al. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS ONE. 2012;7(11):e50262. doi:10.1371/journal.pone.0050262.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Deng D, Jiang N, Hao SJ, Sun H, Zhang GJ. Loss of membrane cholesterol influences lysosomal permeability to potassium ions and protons. Biochim Biophys Acta. 2009;1788(2):470–6. doi:10.1016/j.bbamem.2008.11.018.

    Article  CAS  PubMed  Google Scholar 

  48. Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation: cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta. 2009;1793(4):674–83. doi:10.1016/j.bbamcr.2008.09.020.

    Article  CAS  PubMed  Google Scholar 

  49. Riganti C, Orecchia S, Silvagno F, Pescarmona G, Betta PG, Gazzano E, et al. Asbestos induces nitric oxide synthesis in mesothelioma cells via Rho signaling inhibition. Am J Respir Cell Mol Biol. 2007;36(6):746–56. doi:10.1165/rcmb.2006-0011OC.

    Article  CAS  PubMed  Google Scholar 

  50. Biswas R, Hamilton Jr RF, Holian A. Role of lysosomes in silica-induced inflammasome activation and inflammation in absence of MARCO. J Immunol Res. 2014;2014:304180. doi:10.1155/2014/304180.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Ridgway ND. Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim Biophys Acta. 2000;1484(2–3):129–41.

    Article  CAS  PubMed  Google Scholar 

  52. Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999;96(20):11041–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta. 2006;1758(12):2016–26. doi:10.1016/j.bbamem.2006.08.007.

    Article  CAS  PubMed  Google Scholar 

  54. Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010;15(5):527–40. doi:10.1007/s10495-009-0452-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhu H, Yoshimoto T, Yamashima T. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J Biol Chem. 2014;289(40):27432–43. doi:10.1074/jbc.M114.560334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53. doi:10.1038/nature08710.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang G, Yi YP, Zhang GJ. Effects of arachidonic acid on the lysosomal ion permeability and osmotic stability. J Bioenerg Biomembr. 2006;38(1):75–82. doi:10.1007/s10863-006-9008-3.

    Article  CAS  PubMed  Google Scholar 

  58. Hu JS, Li YB, Wang JW, Sun L, Zhang GJ. Mechanism of lysophosphatidylcholine-induced lysosome destabilization. J Membr Biol. 2007;215(1):27–35. doi:10.1007/s00232-007-9002-7.

    Article  CAS  PubMed  Google Scholar 

  59. Yi YP, Wang X, Zhang G, Fu TS, Zhang GJ. Phosphatidic acid osmotically destabilizes lysosomes through increased permeability to K+ and H+. Gen Physiol Biophys. 2006;25(2):149–60.

    CAS  PubMed  Google Scholar 

  60. Guidetti GF, Consonni A, Cipolla L, Mustarelli P, Balduini C, Torti M. Nanoparticles induce platelet activation in vitro through stimulation of canonical signalling pathways. Nanomedicine. 2012;8(8):1329–36. doi:10.1016/j.nano.2012.04.001.

    Article  CAS  PubMed  Google Scholar 

  61. Nakajima T, Ito M, Tchoua U, Tojo H, Hashimoto M. Phospholipase A2-mediated superoxide production of murine peritoneal macrophages induced by chrysotile stimulation. Int J Biochem Cell Biol. 2000;32(7):779–87.

    Article  CAS  PubMed  Google Scholar 

  62. Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. Biochim Biophys Acta. 2012;1824(1):224–36. doi:10.1016/j.bbapap.2011.08.005.

    Article  CAS  PubMed  Google Scholar 

  63. Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 2013;1833(10):2244–53. doi:10.1016/j.bbamcr.2013.05.019.

    Article  CAS  PubMed  Google Scholar 

  64. Arnandis T, Ferrer-Vicens I, Garcia-Trevijano ER, Miralles VJ, Garcia C, Torres L, et al. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. Cell Death Differ. 2012;19(9):1536–48. doi:10.1038/cdd.2012.46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lubke T, Lobel P, Sleat DE. Proteomics of the lysosome. Biochim Biophys Acta. 2009;1793(4):625–35. doi:10.1016/j.bbamcr.2008.09.018.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med. 2006;27(5–6):495–502. doi:10.1016/j.mam.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  67. Endo Y, Furuta A, Nishino I. Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol. 2015;129(3):391–8. doi:10.1007/s00401-015-1385-4.

    Article  CAS  PubMed  Google Scholar 

  68. Cherra 3rd SJ, Chu CT. Autophagy in neuroprotection and neurodegeneration: a question of balance. Future Neurol. 2008;3(3):309–23. doi:10.2217/14796708.3.3.309.

    PubMed Central  PubMed  Google Scholar 

  69. Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20. doi:10.1186/1743-8977-9-20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, et al. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol. 2010;248(3):249–58. doi:10.1016/j.taap.2010.08.008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Biazik J, Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy. 2015;11(3):439–51. doi:10.1080/15548627.2015.1017178.

    Article  PubMed  Google Scholar 

  72. Li R, Ji Z, Qin H, Kang X, Sun B, Wang M, et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1beta producing inflammasome. ACS Nano. 2014;8(10):10280–92. doi:10.1021/nn505002w.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Joshi GN, Knecht DA. Silica phagocytosis causes apoptosis and necrosis by different temporal and molecular pathways in alveolar macrophages. Apoptosis. 2013;18(3):271–85. doi:10.1007/s10495-012-0798-y.

    Article  CAS  PubMed  Google Scholar 

  74. Yang M, Zhang M, Tahara Y, Chechetka S, Miyako E, Iijima S, et al. Lysosomal membrane permeabilization: carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism. Toxicol Appl Pharmacol. 2014;280(1):117–26. doi:10.1016/j.taap.2014.07.022.

    Article  CAS  PubMed  Google Scholar 

  75. Fenyo IM, Gafencu AV. The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology. 2013;218(11):1376–84. doi:10.1016/j.imbio.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  76. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006;391(5):499–510. doi:10.1007/s00423-006-0073-1.

    Article  PubMed  Google Scholar 

  77. Ather JL, Martin RA, Ckless K, Poynter ME. Inflammasome activity in non-microbial lung inflammation. J Environ Immunol Toxicol. 2014;1(3):108–17.

    PubMed Central  PubMed  Google Scholar 

  78. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7. doi:10.1126/science.1156995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Sun B, Wang X, Ji Z, Li R, Xia T. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9(9–10):1595–607. doi:10.1002/smll.201201962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–15. doi:10.1038/nri2725.

    Article  CAS  PubMed  Google Scholar 

  81. Cassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 2009;21(4):194–8. doi:10.1016/j.smim.2009.05.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res. 2015;8:15–27. doi:10.2147/JIR.S51250.

    PubMed Central  PubMed  Google Scholar 

  83. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6:35. doi:10.1186/1743-8977-6-35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Sun B, Wang X, Ji Z, Wang M, Liao YP, Chang CH, et al. NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small. 2015;11(17):2087–97. doi:10.1002/smll.201402859.

    Article  CAS  PubMed  Google Scholar 

  85. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7(1):31–40. doi:10.1038/nri1997.

    Article  CAS  PubMed  Google Scholar 

  86. Guey B, Bodnar M, Manie SN, Tardivel A, Petrilli V. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci U S A. 2014;111(48):17254–9. doi:10.1073/pnas.1415756111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7. doi:10.1038/ni.1703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.

    CAS  PubMed  Google Scholar 

  89. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A. 2008;105(26):9035–40. doi:10.1073/pnas.0803933105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano. 2012;6(6):5366–80. doi:10.1021/nn3012114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailander V, Landfester K, et al. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano. 2011;5(12):9648–57. doi:10.1021/nn203596e.

    Article  CAS  PubMed  Google Scholar 

  92. Donaldson K, Borm PJ, Castranova V, Gulumian M. The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part Fibre Toxicol. 2009;6:13. doi:10.1186/1743-8977-6-13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402. doi:10.1038/nri2975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. doi:10.1038/nature09663.

    Article  CAS  PubMed  Google Scholar 

  95. Blomgran R, Zheng L, Stendahl O. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol. 2007;81(5):1213–23. doi:10.1189/jlb.0506359.

    Article  CAS  PubMed  Google Scholar 

  96. Holian A, Hamilton Jr RF, Morandi MT, Brown SD, Li L. Urban particle-induced apoptosis and phenotype shifts in human alveolar macrophages. Environ Health Perspect. 1998;106(3):127–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Iyer R, Hamilton RF, Li L, Holian A. Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol Appl Pharmacol. 1996;141(1):84–92. doi:10.1006/taap.1996.0263.

    Article  CAS  PubMed  Google Scholar 

  98. Hamilton Jr RF, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med. 2008;44(7):1246–58. doi:10.1016/j.freeradbiomed.2007.12.027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Soderstjerna E, Bauer P, Cedervall T, Abdshill H, Johansson F, Johansson UE. Silver and gold nanoparticles exposure to in vitro cultured retina–studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PLoS ONE. 2014;9(8):e105359. doi:10.1371/journal.pone.0105359.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Wahab R, Dwivedi S, Khan F, Mishra YK, Hwang IH, Shin HS, et al. Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells. Colloids Surf B: Biointerfaces. 2014;123:664–72. doi:10.1016/j.colsurfb.2014.10.012.

    Article  CAS  PubMed  Google Scholar 

  101. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3(2):410–20. doi:10.1039/c0nr00478b.

    Article  CAS  PubMed  Google Scholar 

  102. Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, et al. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A. 2009;72(19):1141–9. doi:10.1080/15287390903091764.

    Article  CAS  PubMed  Google Scholar 

  103. Periasamy VS, Athinarayanan J, Al-Hadi AM, Juhaimi FA, Alshatwi AA. Effects of titanium dioxide nanoparticles isolated from confectionery products on the metabolic stress pathway in human lung fibroblast cells. Arch Environ Contam Toxicol. 2015;68(3):521–33. doi:10.1007/s00244-014-0109-4.

    Article  CAS  PubMed  Google Scholar 

  104. Kopnin PB, Kravchenko IV, Furalyov VA, Pylev LN, Kopnin BP. Cell type-specific effects of asbestos on intracellular ROS levels, DNA oxidation and G1 cell cycle checkpoint. Oncogene. 2004;23(54):8834–40. doi:10.1038/sj.onc.1208108.

    Article  CAS  PubMed  Google Scholar 

  105. Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 2013;10(9):3886–907. doi:10.3390/ijerph10093886.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Li P, Liu T, Kamp DW, Lin Z, Wang Y, Li D, et al. The c-Jun N-terminal kinase signaling pathway mediates chrysotile asbestos-induced alveolar epithelial cell apoptosis. Mol Med Rep. 2015;11(5):3626–34. doi:10.3892/mmr.2014.3119.

    CAS  PubMed  Google Scholar 

  107. Nishimura Y, Maeda M, Kumagai-Takei N, Lee S, Matsuzaki H, Wada Y, et al. Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med. 2013;18(3):198–204. doi:10.1007/s12199-013-0333-y.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Archimandriti DT, Dalavanga YA, Cianti R, Bianchi L, Manda-Stachouli C, Armini A, et al. Proteome analysis of bronchoalveolar lavage in individuals from Metsovo, nonoccupationally exposed to asbestos. J Proteome Res. 2009;8(2):860–9. doi:10.1021/pr800370n.

    Article  CAS  PubMed  Google Scholar 

  109. Jessop F, Holian A. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo. Nanotoxicology. 2015;9(3):365–72. doi:10.3109/17435390.2014.933904.

    Article  CAS  PubMed  Google Scholar 

  110. Rabolli V, Badissi A, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, et al. The alarmin IL-1 inverted question mark is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol. 2014;11(1):69. doi:10.1186/s12989-014-0069-x.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138–46. doi:10.2119/molmed.2013.00164.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Miller FW, Alfredsson L, Costenbader KH, Kamen DL, Nelson LM, Norris JM, et al. Epidemiology of environmental exposures and human autoimmune diseases: findings from a National Institute of Environmental Health Sciences Expert Panel Workshop. J Autoimmun. 2012;39(4):259–71. doi:10.1016/j.jaut.2012.05.002.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Pfau JC, Serve KM, Noonan CW. Autoimmunity and asbestos exposure. Autoimmun Dis. 2014;2014:782045. doi:10.1155/2014/782045.

    Google Scholar 

  114. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488(7413):670–4. doi:10.1038/nature11290.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Peeters PM, Eurlings IM, Perkins TN, Wouters EF, Schins RP, Borm PJ, et al. Silica-induced NLRP3 inflammasome activation in vitro and in rat lungs. Part Fibre Toxicol. 2014;11(1):58. doi:10.1186/s12989-014-0058-0.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010;107(28):12611–16. doi:10.1073/pnas.1006542107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15. doi:10.4049/jimmunol.0900138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88. doi:10.1146/annurev.immunol.021908.132603.

    Article  CAS  PubMed  Google Scholar 

  119. Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012;209(9):1519–28. doi:10.1084/jem.20120189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Hreggvidsdottir HS, Lundberg AM, Aveberger AC, Klevenvall L, Andersson U, Harris HE. High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med. 2012;18:224–30. doi:10.2119/molmed.2011.00327.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, et al. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol. 2010;43(2):142–51. doi:10.1165/rcmb.2009-0113OC.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Kono H, Kimura Y, Latz E. Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol. 2014;30:91–8. doi:10.1016/j.coi.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  123. Zheng F, Xing S, Gong Z, Mu W, Xing Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediat Inflamm. 2014;2014:507208. doi:10.1155/2014/507208.

    Google Scholar 

  124. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS ONE. 2008;3(10):e3331. doi:10.1371/journal.pone.0003331.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, et al. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology. 2013;7(6):1070–81. doi:10.3109/17435390.2012.702230.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, et al. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 2011;8:24. doi:10.1186/1743-8977-8-24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, et al. A carbon nanotube toxicity paradigm driven by mast cells and the IL-(3)(3)/ST(2) axis. Small. 2012;8(18):2904–12. doi:10.1002/smll.201200873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Zhu M, Perrett S, Nie G. Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. Small. 2013;9(9–10):1619–34. doi:10.1002/smll.201201630.

    Article  CAS  PubMed  Google Scholar 

  129. Berry G, Gibbs GW. An overview of the risk of lung cancer in relation to exposure to asbestos and of taconite miners. Regul Toxicol Pharmacol. 2008;52(1 Suppl):S218–22. doi:10.1016/j.yrtph.2007.09.012.

    Article  CAS  PubMed  Google Scholar 

  130. Verma A, Uzun O, Hu Y, Han HS, Watson N, Chen S, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008;7(7):588–95. doi:10.1038/nmat2202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, et al. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009;21 Suppl 1:55–60. doi:10.1080/08958370902942517.

    Article  CAS  PubMed  Google Scholar 

  132. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012;6(1):36–46. doi:10.3109/17435390.2011.552811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Jin H, Heller DA, Sharma R, Strano MS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009;3(1):149–58. doi:10.1021/nn800532m.

    Article  CAS  PubMed  Google Scholar 

  134. Pietroiusti A, Campagnolo L, Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small. 2013;9(9–10):1557–72. doi:10.1002/smll.201201463.

    Article  CAS  PubMed  Google Scholar 

  135. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012;161(2):164–74. doi:10.1016/j.jconrel.2012.04.009.

    Article  CAS  PubMed  Google Scholar 

  136. Davis GS, Holmes CE, Pfeiffer LM, Hemenway DR. Lymphocytes, lymphokines, and silicosis. J Environ Pathol Toxicol Oncol. 2001;20 Suppl 1:53–65.

    CAS  PubMed  Google Scholar 

  137. Beamer CA, Migliaccio CT, Jessop F, Trapkus M, Yuan D, Holian A. Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol. 2010;88(3):547–57. doi:10.1189/jlb.0210108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm. 2007;4(1):73–84. doi:10.1021/mp060096p.

    Article  CAS  PubMed  Google Scholar 

  139. Perkins TN, Peeters PM, Shukla A, Arijs I, Dragon J, Wouters EF, et al. Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells. Hum Mol Genet. 2015;24(5):1374–89. doi:10.1093/hmg/ddu551.

    Article  CAS  PubMed  Google Scholar 

  140. teWaternaude JM, Ehrlich RI, Churchyard GJ, Pemba L, Dekker K, Vermeis M, et al. Tuberculosis and silica exposure in South African gold miners. Occup Environ Med. 2006;63(3):187–92. doi:10.1136/oem.2004.018614.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Cowie RL. The epidemiology of tuberculosis in gold miners with silicosis. Am J Respir Crit Care Med. 1994;150(5 Pt 1):1460–2. doi:10.1164/ajrccm.150.5.7952577.

    Article  CAS  PubMed  Google Scholar 

  142. Tse LA, Chen MH, Au RK, Wang F, Wang XR, Yu IT. Pulmonary tuberculosis and lung cancer mortality in a historical cohort of workers with asbestosis. Pub Health. 2012;126(12):1013–16. doi:10.1016/j.puhe.2012.09.012.

    Article  CAS  Google Scholar 

  143. Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B. Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS ONE. 2015;10(3):e0118778. doi:10.1371/journal.pone.0118778.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Lasfargues G, Lardot C, Delos M, Lauwerys R, Lison D. The delayed lung responses to single and repeated intratracheal administration of pure cobalt and hard metal powder in the rat. Environ Res. 1995;69(2):108–21. doi:10.1006/enrs.1995.1032.

    Article  CAS  PubMed  Google Scholar 

  145. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;109 Suppl 4:547–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, et al. Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008;20(6):567–74. doi:10.1080/08958370701874671.

    Article  CAS  PubMed  Google Scholar 

  147. Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res. 2013;46(3):622–31. doi:10.1021/ar300031y.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Sporn TA. Mineralogy of asbestos. Recent Results Cancer Res. 2011;189:1–11. doi:10.1007/978-3-642-10862-4_1.

    Article  CAS  PubMed  Google Scholar 

  149. Thibodeau MS, Giardina C, Knecht DA, Helble J, Hubbard AK. Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci. 2004;80(1):34–48. doi:10.1093/toxsci/kfh121.

    Article  CAS  PubMed  Google Scholar 

  150. Peeters PM, Perkins TN, Wouters EF, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol. 2013;10:3. doi:10.1186/1743-8977-10-3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Thibodeau M, Giardina C, Hubbard AK. Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol Sci. 2003;76(1):91–101. doi:10.1093/toxsci/kfg178.

    Article  CAS  PubMed  Google Scholar 

  152. Costantini LM, Gilberti RM, Knecht DA. The phagocytosis and toxicity of amorphous silica. PLoS ONE. 2011;6(2):e14647. doi:10.1371/journal.pone.0014647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS ONE. 2014;9(3):e92634. doi:10.1371/journal.pone.0092634.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Lai JC, Ananthakrishnan G, Jandhyam S, Dukhande VV, Bhushan A, Gokhale M, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–23. doi:10.2147/IJN.S5238.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Hashimoto M, Imazato S. Cytotoxic and genotoxic characterization of aluminum and silicon oxide nanoparticles in macrophages. Dent Mater. 2015;31(5):556–64. doi:10.1016/j.dental.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  156. Li M, Gunter ME, Fukagawa NK. Differential activation of the inflammasome in THP-1 cells exposed to chrysotile asbestos and Libby “six-mix” amphiboles and subsequent activation of BEAS-2B cells. Cytokine. 2012;60(3):718–30. doi:10.1016/j.cyto.2012.08.025.

    Article  CAS  PubMed  Google Scholar 

  157. Bergamini C, Fato R, Biagini G, Pugnaloni A, Giantomassi F, Foresti E, et al. Mitochondrial changes induced by natural and synthetic asbestos fibers: studies on isolated mitochondria. Cell Mol Biol (Noisy-le-grand). 2006;52(Suppl):OL905–13.

    CAS  Google Scholar 

  158. Jajte J, Lao I, Wisniewska-Knypl JM. Enhanced lipid peroxidation and lysosomal enzyme activity in the lungs of rats with prolonged pulmonary deposition of crocidolite asbestos. Br J Ind Med. 1987;44(3):180–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Thompson JK, Westbom CM, MacPherson MB, Mossman BT, Heintz NH, Spiess P, et al. Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation. Part Fibre Toxicol. 2014;11:24. doi:10.1186/1743-8977-11-24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Shukla A, Jung M, Stern M, Fukagawa NK, Taatjes DJ, Sawyer D, et al. Asbestos induces mitochondrial DNA damage and dysfunction linked to the development of apoptosis. Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L1018–25. doi:10.1152/ajplung.00038.2003.

    Article  CAS  PubMed  Google Scholar 

  161. Visalli G, Bertuccio MP, Iannazzo D, Piperno A, Pistone A, Di Pietro A. Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicol In vitro. 2015;29(2):352–62. doi:10.1016/j.tiv.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  162. Hamilton RF, Girtsman TA, Xiang C, Wu N, Holian A. Nickel contamination on MWCNT is related to particle bioactivity but not toxicity in the THP-1 transformed macrophage model. Int J Biomed Nanosci Nanotechnol. 2013;3(1/2):107–26.

    Google Scholar 

  163. Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder E, Fazlollahi F et al. Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano Go Consortium. Environ Health Perspect. 2013;121(6):683–90.

    Google Scholar 

  164. van Berlo D, Wilhelmi V, Boots AW, Hullmann M, Kuhlbusch TA, Bast A, et al. Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol. 2014;88(9):1725–37. doi:10.1007/s00204-014-1220-z.

    Article  PubMed  CAS  Google Scholar 

  165. Baron L, Gombault A, Fanny M, Villeret B, Savigny F, Guillou N, et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015;6:e1629. doi:10.1038/cddis.2014.576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK, et al. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomedicine. 2012;7:1203–14. doi:10.2147/IJN.S28647.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrij Holian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Bunderson-Schelvan, M., Hamilton, R.F., Trout, K.L., Jessop, F., Gulumian, M., Holian, A. (2016). Approaching a Unified Theory for Particle-Induced Inflammation. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics