Skip to main content

Phosphorylation of the Starch Granule

  • Chapter
Starch

Abstract

The presence of starch phosphate monoesters in native starch, especially in tuberous storage starch types, has for many years been known to impart unique and valuable functional assets of importance for food and materials applications. The quest of delineating the incorporation of phosphate groups in storage starch of crops, the general misconception over many years that starch phosphorylation is a “metabolic mistake” or a “side reaction”, was disproved when the starch phosphorylator was discovered some 15 years ago. Over the recent years, additional data have evolved to demonstrate that phosphorylation of starch granules in plants is a built-in metabolic feature that is essential for well-functioning starch metabolism. This chapter will embrace the ubiquitous presence of starch phosphorylation in plants and its impact on plant metabolism and starch functionality and very recent studies demonstrating its tremendous impact on crop performance and future prospects for starch bioengineering and polysaccharide innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel GJW, Springer F, Willmitzer L, Kossmann J (1996) Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J 10:981–991

    CAS  PubMed  Google Scholar 

  • Ball S, Guan HP, James M et al (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86:349–352

    CAS  PubMed  Google Scholar 

  • Ball S, Colleoni C, Cenci U et al (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801

    CAS  PubMed  Google Scholar 

  • Baunsgaard L, Mogensen HL, Mikkelsen R et al (2005) A novel isoform of glucan water dikinase phosphorylates prephosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J 41:595–605

    CAS  PubMed  Google Scholar 

  • Bay-Smidt AM, Wischmann B, Olsen CE, Nielsen TH (1994) Starch bound phosphate in potato as studied by a simple method for determination of organic phosphate and p-31-nmr. Starch/Stärke 46:167–172

    Google Scholar 

  • Bertoft E, Blennow A (2009) Chapter 4: Structure of potato starch. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic Press (imprint of Elsevier), Burlington, pp 83–98

    Google Scholar 

  • Bertoft E, Koch K, Åman P (2012) Building block organisation of clusters in amylopectin from different structural types. Int J Biol Macromol 50:1212–1223

    CAS  PubMed  Google Scholar 

  • Blennow A, Engelsen SB (2010) Helix-breaking news: fighting crystalline starch energy deposits in the cell. Trends Plant Sci 15:236–240

    CAS  PubMed  Google Scholar 

  • Blennow A, Svensson B (2010) Dynamics of starch granule biogenesis – the role of redox regulated enzymes and low affinity CBMs. Biocatal Biotransform 28:3–9

    CAS  Google Scholar 

  • Blennow A, Bay-Smidt AM, Wischmann B et al (1998a) The degree of starch phosphorylation is related to the chain length distribution of the neutral and the phosphorylated chains of amylopectin. Carbohydr Res 307:45–54

    CAS  Google Scholar 

  • Blennow A, Bay-Smidt AM, Olsen CE et al (1998b) Analysis of glucose-3-P in starch using high performance ion exchange chromatography. J Chromatogr 829:385–391

    CAS  Google Scholar 

  • Blennow A, Bay-Smidt AM, Olsen CE et al (2000) The distribution of covalently bound starch-phosphate in native starch granules. Int J Biol Macromol 27:211–218

    CAS  PubMed  Google Scholar 

  • Blennow A, Engelsen SB, Nielsen TH et al (2002) Starch phosphorylation – a new front line in starch research. Trends Plant Sci 7:445–450

    CAS  PubMed  Google Scholar 

  • Blennow A, Bay-Smidt A, Leonhardt P et al (2003) Starch paste stickiness is a relevant native starch selection criterion for wet-end paper manufacturing. Starch/Staerke 55:381–389

    CAS  Google Scholar 

  • Blennow A, Sjöland KA, Andersson R et al (2005a) The distribution of elements in the native starch granule as studied by particle-induced X-ray emission and complementary methods. Anal Biochem 347:327–329

    CAS  PubMed  Google Scholar 

  • Blennow A, Wischmann B, Houborg K et al (2005b) Structure - function relationships of transgenic starches with engineered phosphate substitution and starch branching. Int J Biol Macromol 36:159–168

    CAS  PubMed  Google Scholar 

  • Blennow A, Houborg K, Andersson R et al (2006) Phosphate positioning and availability in the starch granule matrix as studied by EPR. Biomacromolecules 7:965–974

    CAS  PubMed  Google Scholar 

  • Blennow A, Jensen SL, Shaik SS et al (2013) Future cereal starch bioengineering – cereal ancestors encounter gene-tech and designer enzymes. Cereal Chem 90:274–287

    CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Carciofi M, Shaik SS, Jensen SL et al (2011) Hyperphosphorylation of cereal starch. J Cereal Sci 54:339–346

    CAS  Google Scholar 

  • Carciofi M, Blennow A, Jensen SL et al (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12(223):1–16

    Google Scholar 

  • Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiu C-W, Solarek D (2009) Modification of starches. In: BeMiller JN, Whistler RL (eds) Starch: chemistry and technology. Academic, New York, pp 629–655

    Google Scholar 

  • Christiansen C, Abou Hachem M, Glaring MA et al (2009) A CBM20 low affinity starch binding domain from glucan, water dikinase. FEBS Lett 583:1159–1163

    Google Scholar 

  • Coehn A (1897) Über elektrische Wanderung von Kolloiden. Z Electrochem 4:63–67

    Google Scholar 

  • Damager I, Engelsen SB, Blennow A et al (2010) First principles insight into starch-like α-glucans: their synthesis, conformation and hydration. Chem Rev 110:2049–2080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desjarlais JR, Berg JM (1992) Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A 89:7345–7349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dudkiewicz M, Siminska J, Pawlowski K et al (2008) Bioinformatics analysis of oligosaccharide phosphorylation effect on the stabilization of the β-amylase ligand complex. J Carbohydr Chem 27:479–495

    CAS  Google Scholar 

  • Edner C, Li J, Albrecht T, Mahlow S et al (2007) Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases. Plant Physiol 145:17–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • EFSA Panel on Genetically Modified Organisms (2012) Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J 10(2):2561

    Google Scholar 

  • Engelsen SB, Madsen MAO, Blennow A et al (2003) The phosphorylation site in double helical amylopectin as investigated by a combined approach using chemical synthesis, crystallography and molecular modeling. FEBS Lett 541:137–144

    CAS  PubMed  Google Scholar 

  • Enriques J (1998) Genomics – genomics and the world’s economy. Science 281(5379):925–926

    Google Scholar 

  • Fernbach A (1904) Quelques observations sur la composition de l’amidon de pommes de terre. C R Acad Sci 138:428–430

    CAS  Google Scholar 

  • Frohberg, C (2008) Genetically modified plants which synthesize a starch having increased swelling power. International patent WO 08/017518

    Google Scholar 

  • Frohberg C, Kötting O, Ritte G et al (2012) Plants with increased activity of a starch phosphorylating enzyme. US patent application 2012/0017333 A1

    Google Scholar 

  • Gillgren T, Blennow A, Pettersson AJ, Stading M (2011) Modulating rheo-kinetics of native starch films towards improved wet-strength. Carbohydr Polym 83(2):383–391

    Google Scholar 

  • Glaring MA, Koch KB, Blennow A (2006) Genotype specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach. Biomacromolecules 7:2310–2320

    CAS  PubMed  Google Scholar 

  • Glaring MA, Zygadlo A, Thorneycroft D et al (2007) A cytosolic isoform of α-glucan, water dikinase from Arabidopsis is expressed in the companion cells of the phloem. J Exp Bot 58(14):3949–3960

    CAS  PubMed  Google Scholar 

  • Glaring MG, Baumann MJ, Hachem MA et al (2011) Characterization of the CBM45 family of low-affinity starch-binding domains involved in plastidial starch metabolism. FEBS J 278:1175–1185

    CAS  PubMed  Google Scholar 

  • Godwin ID, Williams SB, Pandit PS et al (2009) Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality. In Vitro Cell Dev Biol Plant 45(4):383–399

    CAS  Google Scholar 

  • Haghayegh G, Schoenlechner R (2011) Physically modified starches: a review. J Food Agric Environ 9:27–29

    CAS  Google Scholar 

  • Hansen PI, Spraul M, Dvortsak P et al (2008) Starch phosphorylation – maltosidic restrains upon 3’- and 6’- phosphorylation investigated by chemical synthesis, molecular dynamics modeling and NMR spectroscopy. Biopolymers 9:179–193

    Google Scholar 

  • Hejazi M, Fettke J, Haebel S et al (2008) Glucan, water dikinase phosphorylates crystalline maltodextrins and thereby initiates solubilization. Plant J 55:323–334

    CAS  PubMed  Google Scholar 

  • Hejazi M, Fettke J, Paris O et al (2009) The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the A- and B-type allomorphs of crystallized maltodextrins but the mode of action differs. Plant Physiol 150:962–976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hejazi M, Fettke J, Kötting O et al (2010) The laforin-like dual-specificity SEX4 from Arabidopsis thaliana hydrolyses both C-6 and C-3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of α-glucans. Plant Physiol 152:711–722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hizukuri S, Tabata S, Nikuni Z (1970) Studies on starch phosphate. Part 1. Estimation of glucose-6-phosphate residues in starch and the presence of other bound phosphate(s). Starch/Stärke 22:338–343

    CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    CAS  Google Scholar 

  • Jane J-L, Chen JJ (1993) Internal structure of the potato starch granule revealed by chemical gelatinization. Carbohydr Res 247:279–290

    CAS  Google Scholar 

  • Jane J-L, Ao Z, Duvick SA et al (2003) Structures of amylopectin and starch granules: how are they synthesized? J Appl Glycosci 50:167–172

    CAS  Google Scholar 

  • Jensen SL, Larsen FH, Bandshom O et al (2013a) Stabilization of semi-solid-state starch by branching enzyme-assisted chain-transfer catalysis at extreme substrate concentration. Biochem Eng J 72:1–10

    CAS  Google Scholar 

  • Jensen SJ, Zhu F, Vamadevan V et al (2013b) Structural and physical properties of branching enzyme stabilized starch. Carbohydr Polym 98:1490–1496

    CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218

    CAS  PubMed  Google Scholar 

  • Jobling SA, Westcott RJ, Tayal A et al (2002) Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nat Biotechnol 20(3):295–929

    CAS  PubMed  Google Scholar 

  • Kamasaka H, Uchida M, Kusaka K et al (1995) Inhibitory effect of phosphorylated oligosaccharides prepared from potato starch on the formation of calcium phosphate. Biosci Biotechnol Biochem 59:1412–1416

    CAS  PubMed  Google Scholar 

  • Kamasaka H, To-o K, Kusaka K et al (1997a) Action pattern of neopullulanase on phosphoryl oligosaccharides prepared from potato starch. J Appl Glycosci 44:275–283

    CAS  Google Scholar 

  • Kamasaka H, To-o K, Kusaka K et al (1997b) A way of enhancing the inhibitory effect of phosphoryl oligosaccharides on the formation of a calcium phosphate precipitate using the coupling reaction of cyclomaltodextrin glucanotransferase. J Appl Glycosci 44:285–293

    CAS  Google Scholar 

  • Kamasaka H, Diesuke I, Kentaro M et al (2003) Production and application of phosphoryl oligosaccharides prepared from potato starch. Trends Glycosci Glycotechnol 15:75–89

    CAS  Google Scholar 

  • Kötting O, Pusch K, Tiessen A et al (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137:242–252

    PubMed Central  PubMed  Google Scholar 

  • Kötting O, Santelia D, Edner C et al (2009) STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21:334–346

    PubMed Central  PubMed  Google Scholar 

  • Kozlov SS, Blennow A, Krivandin AV et al (2007) Structural and thermodynamic properties of starches extracted from GBSS- and GWD suppressed potato lines. Int J Biol Macromol 40:449–460

    CAS  PubMed  Google Scholar 

  • Lanahan MB, Basu SS (2005) Modified starch, uses methods for production thereof. International patent WO 05/002359

    Google Scholar 

  • Larsen FH, Blennow A, Engelsen SB (2008) Starch granule hydration – A MAS NMR investigation. Food Biophys 3:25–32

    Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    CAS  PubMed  Google Scholar 

  • Lim S-T, Kasemsuwan T, Jane J-L (1994) Characterization of phosphorus in starch by 31P-nuclear magnetic resonance spectroscopy. Cereal Chem 71(5):488–493

    CAS  Google Scholar 

  • Lloyd JR, Landschütze V, KossmannJ J (1999) Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochem J 338:515–521

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorberth R, Ritte G, Willmitzer L et al (1998) Inhibition of a starch-granule bound protein leads to modified starch and repression of cold sweetening. Nat Biotechnol 16:473–477

    CAS  PubMed  Google Scholar 

  • Mahlow S, Hejazi M, Kuhnert F et al (2014) Phosphorylation of transitory starch by a-glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules. New Phytol 203:495–507

    CAS  PubMed  Google Scholar 

  • Mason WR (2009) Starch use in foods. In: BeMiller JN, Whistler RL (eds) Starch: chemistry and technology. Academic, New York, pp 745–795

    Google Scholar 

  • Mikkelsen R, Blennow A (2005) Functional domain organization of the potato a-glucan, water dikinase (GWD): evidence for separate site catalysis as revealed by limited proteolysis and deletion mutants. Biochem J 385:355–361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mikkelsen R, Baunsgaard L, Blennow A (2004) Functional characterization of α-glucan, water dikinase, the starch phosphorylating enzyme. Biochem J 377:525–532

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mikkelsen R, Mutenda K, Mant A et al (2005) α-glucan, water dikinase (GWD): a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc Natl Acad Sci U S A 102:1785–1790

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mikkelsen R, Suszkiewicz K, Blennow A (2006) A novel type of carbohydrate binding module identified in α-glucan, water dikinases specific for regulated plastidial starch metabolism. Biochemistry 45:4674–4682

    CAS  PubMed  Google Scholar 

  • Miller JC, Tan SY, Qiao GJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    CAS  PubMed  Google Scholar 

  • Muhrbeck P, Eliasson A–C (1987) Influence of pH and ionic strength on the viscoelastic properties of starch gels – a comparison of potato and cassava starches. Carbohydr Polym 7:291–300

    CAS  Google Scholar 

  • Muhrbeck P, Eliasson A-C (1991) Influence of the naturally-occurring phosphate-esters on the crystallinity of potato starch. J Sci Food Agric 55:13–18

    CAS  Google Scholar 

  • Nashilevitz S, Melamed-Bessudo C, Aharoni A et al (2009) The legwd mutant uncovers the role of starch phosphorylation in pollen development and germination in tomato. Plant J 57:1–13

    CAS  PubMed  Google Scholar 

  • Nielsen TH, Wischmann B, Enevoldsen K et al (1994) Starch phosphorylation in potato tubers proceeds concurrently with de novo biosynthesis of starch. Plant Physiol 105:111–117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Staerke 62:389–420

    CAS  Google Scholar 

  • Planchot V, Colonna P, Buleon A (1997) Enzymatic hydrolysis of a-glucan crystallites. Carbohydr Res 298:319–326

    CAS  Google Scholar 

  • Posternak T (1935) Sur le phosphore des amidons. Helv Chim Acta 18:1351–1369

    CAS  Google Scholar 

  • Ral JP, Bowerman AF, Li Z et al (2012) Downregulation of glucan water-dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnol J 10:871–882

    Google Scholar 

  • Reimann R, Ritte G, Steup M et al (2002) Association of α-amylase and the R1 protein with starch granules precedes the initiation of net starch degradation in turions of Spirodela polyrhiza. Physiol Plant 114:2–12

    CAS  PubMed  Google Scholar 

  • Reimann R, Hippler M, Machelett B et al (2004) Light induces phosphorylation of glucan water dikinase, which precedes starch degradation in turions of the duckweed Spirodela polyrhiza. Plant Physiol 135:121–128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ritte G, Lorberth R, Steup M (2000a) Reversible binding of the starch related R1 protein to the surface of transitory starch granules. Plant J 21:387–391

    CAS  PubMed  Google Scholar 

  • Ritte G, Eckermann N, Haebel S et al (2000b) Compartmentation of the starch-related R1 protein in higher plants. Starch/Staerke 52:179–185

    CAS  Google Scholar 

  • Ritte G, Lloyd JR, Eckermann N et al (2002) The starch-related R1 protein is an alpha-glucan, water dikinase. Proc Natl Acad Sci U S A 99:7166–7171

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ritte G, Scharf A, Eckermann N et al (2004) Phosphorylation of transitory starch is increased during degradation. Plant Physiol 135:1–10

    Google Scholar 

  • Ritte G, Heydenreich M, Mahlow S et al (2006) Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Lett 580:4872–4876

    CAS  PubMed  Google Scholar 

  • Samec M (1914) Studien über Pflanzenkolloide, IV. Die Verschiebungen des Phosphorgehaltes bei der Zustandsänderungen und dem diastatischen Abbau der Stärke. Kolloidchem Beih 4:2–54

    Google Scholar 

  • Samec M, Blinc M (1941) Die neuere Entwicklung der Kolloidchemie der Stärke. Velag von Theodor Steinkopff, Dresten

    Google Scholar 

  • Sanjana NE, Cong L, Zhou Y et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santelia D, Kötting O, Seung D et al (2011) The phosphoglucan phosphatase LIKE SEX FOUR2 dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell 23:4096–4111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schewe G, Knies P, Amati SF et al (2002) Monocotyledon plant cells and plants which synthesise modified starch. International patent WO 02/34923

    Google Scholar 

  • Schouten H, Jacobsen E (2008) Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci 13(6):260–261

    CAS  PubMed  Google Scholar 

  • Schreiber K (1958) Chemie und Biochemie unter besonderer Berücksichtigung qualitätbestimmender Faktoren. In: Schick R, Klinkowski M (eds) Die Kartoffel Ein Handbuch. VED Deutscher Lantvirtschaftverlag, Berlin, pp 193–352

    Google Scholar 

  • Schwall GP, Safford R, Westcott RJ et al (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    CAS  PubMed  Google Scholar 

  • Shaik SS, Carciofi M, Martens HJ et al (2014) Starch bioengineering affects cereal grain germination and seedling establishment. J Exp Bot 65(9):2257–2270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Skeffington AW, Graf A, Duxbury Z et al (2014) Glucan, water dikinase exerts little control over starch degradation in Arabidopsis leaves at night. Plant Physiol 165(2):866–879

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slade AJ, McGurie C, Loeffler D et al (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12:1–17

    Google Scholar 

  • Tabata S, Hizukuri S (1971) Studies on starch phosphate. Part 2. Isolation of glucose 3-phosphate and maltose phosphate by acid hydrolysis of potato starch. Starch-Starke 23:267–272

    CAS  Google Scholar 

  • Takeda Y, Hizukuri S (1982) Location of phosphate groups in potato amylopectin. Carbohydr Res 102:321–327

    CAS  Google Scholar 

  • Tanackovic V, Svensson JT, Jensen SL, Buléon A, Blennow A (2014) The deposition and characterization of starch in Brachypodium distachyon. J Exp Bot 65(18):5179–5192

    PubMed Central  PubMed  Google Scholar 

  • Tanaka T, Kobayashi T, Kuriki T (2012) Optimization of calcium concentration of saliva with phosphoryl oligosaccharides of calcium (POs-Ca) for enamel remineralization in vitro. Arch Oral Biol 58:174–180

    PubMed  Google Scholar 

  • Thygesen LG, Blennow A, Engelsen SB (2003) The effects of amylose and starch phosphate on starch gel retrogradation studied by low-field 1H NMR relaxometry. Starch-Starke 55:241–249

    CAS  Google Scholar 

  • To-o K, Kamasaka H, Nakabou Y (2003) Absorbability of calcium from calcium-bound phosphoryl oligosaccharides in comparison with that from various calcium compounds in the rat ligated jejunum loop. Biosci Biotechnol Biochem 67:1713–1718

    CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Viksø-Nielsen A, Blennow A, Kristensen KH et al (2001) Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules 3:836–841

    Google Scholar 

  • Weise SE, Aung K, Jarou ZJ et al (2012) Engineering starch accumulation by manipulation of phosphate metabolism of starch. Plant Biotechnol J 10:545–554

    CAS  PubMed  Google Scholar 

  • Wickramasinghea HAM, Blennow A, Noda T (2009) Physico-chemical and degradative properties of in-planta re-structured potato starch. Carbohydr Polym 77:118–124

    Google Scholar 

  • Wiesenborn DP, Orr PH, Casper HH et al (1994) Potato starch paste behavior as related to some physical/chemical properties. J Food Sci 59:644–648

    CAS  Google Scholar 

  • Wikman J, Larsen FH, Motawia MS et al (2011) Phosphate esters in amylopectin clusters of potato tuber starch. Int J Biol Macromol 48:639–649

    CAS  PubMed  Google Scholar 

  • Wikman J, Blennow A, Buléon A et al (2013) Influence of amylopectin structure and degree of phosphorylation on the molecular composition of potato starch lintners. Biopolymers 101:257–271

    Google Scholar 

  • Wischmann B, Nielsen TH, Møller BL (1999) In vitro biosynthesis of phosphorylated starch in intact potato amyloplasts. Plant Physiol 119:455–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wischmann B, Blennow A, Madsen F et al (2005) Functional characterisation of potato starch modified by specific in planta alteration of the amylopectin branching and phosphate substitution. Food Hydrocoll 19:1016–1024

    CAS  Google Scholar 

  • Yang R, Sun C, Bai J et al (2012) A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice (Oryza sativa L.). PLoS ONE 7(8):e43026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu T-S, Kofler H, Häusler RE et al (2001) SEX1 is a general regulator of starch degradation in plants and not the chloroplast hexose transporter. Plant Cell 13:1907–1918

    Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Blennow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Blennow, A. (2015). Phosphorylation of the Starch Granule. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_12

Download citation

Publish with us

Policies and ethics