Skip to main content

Video Analysis of ACL Injury Mechanisms Using a Model-Based Image-Matching Technique

  • Chapter
Sports Injuries and Prevention

Abstract

Model-based image-matching (MBIM) technique has enabled detailed video analysis of injury situations that previously had been limited to simple visual inspection. We have analyzed anterior cruciate ligament (ACL) injury situations from ten analogue and one HD video sequences using the MBIM technique. The knee kinematical patterns were remarkably consistent, with immediate valgus and internal rotation (IR) motion occurring within 40 ms after initial contact (IC), and then external rotation was observed. Peak vertical ground reaction force (GRF) occurred at 40 ms after IC. Based on these results, it is likely that the ACL injury occurred approximately 40 ms after IC. In the one HD video available, 9 mm of abrupt anterior tibial translation at the time of injury was also detected. On the other hand, the hip kinematics were constant with an abducted, flexed and IR position during 40 ms after IC. Based on these results and other previous studies, we propose a new hypothesis for ACL injury mechanisms that valgus loading and lateral compression generate IR motion and anterior translation of the tibia, due to the joint geometry, result in ACL rupture. Moreover, it seems that the hip is relatively ‘locked’ at IC, cannot absorb energy from GRF and thus the knee is exposed to a larger force, which leads to ACL injury. These results suggest that prevention programs should focus on acquiring a good cutting and landing technique promoting knee flexion and avoiding knee valgus and foot internal rotation, and with greater hip flexion to absorb energy from GRF. Moreover, the fact that the ACL injury occurs within 40 ms after IC suggests that “feed-forward” strategies before landing may be critical, as reflex-based “feed-back” strategies are too slow to prevent ACL injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578

    CAS  PubMed  Google Scholar 

  • Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37:252–259

    Article  PubMed  Google Scholar 

  • Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899

    Article  PubMed  Google Scholar 

  • Caraffa A, Cerulli G, Projetti M, Aisa G, Rizzo A (1996) Prevention of anterior cruciate ligament injuries in soccer. A prospective controlled study of proprioceptive training. Knee Surg Sports Traumatol Arthrosc 4:19–21

    Article  CAS  PubMed  Google Scholar 

  • Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J (2007) Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport 10:96–104

    Article  PubMed  Google Scholar 

  • Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard SJ (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon) 18:662–9

    Article  Google Scholar 

  • DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32:477–483

    Article  PubMed  Google Scholar 

  • Ebstrup JF, Bojsen-Moller F (2000) Anterior cruciate ligament injury in indoor ball games. Scand J Med Sci Sports 10:114–116

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist J, Mandelbaum BR, Melancon H et al (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 36:1476–1483

    Article  PubMed  Google Scholar 

  • Hashemi J, Chandrashekar N, Jang T, Karpat F, Oseto M, Ekwaro-Osire S (2007) An alternative mechanism of non-contact anterior cruciate ligament injury during jump-landing: in-vitro simulation. Exp Mech 47:347–354

    Article  Google Scholar 

  • Hashemi J, Chandrashekar N, Mansouri H et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  • Hashemi J, Breighner R, Chandrashekar N et al (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44:577–585

    Article  PubMed  Google Scholar 

  • Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501

    Article  PubMed  Google Scholar 

  • Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299

    CAS  PubMed  Google Scholar 

  • Krosshaug T, Bahr R (2005) A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J Biomech 38:919–929

    Article  PubMed  Google Scholar 

  • Krosshaug T, Andersen TE, Olsen OE, Myklebust G, Bahr R (2005) Research approaches to describe the mechanisms of injuries in sport: limitations and possibilities. Br J Sports Med 39:330–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krosshaug T, Nakamae A, Boden BP et al (2007a) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359–367

    Article  PubMed  Google Scholar 

  • Krosshaug T, Nakamae A, Boden B et al (2007b) Estimating 3D joint kinematics from video sequences of running and cutting maneuvers–assessing the accuracy of simple visual inspection. Gait Posture 26:378–385

    Article  PubMed  Google Scholar 

  • Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R (2007c) Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports 17:508–519

    Article  CAS  PubMed  Google Scholar 

  • Mandelbaum BR, Silvers HJ, Watanabe DS et al (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33:1003–1010

    Article  PubMed  Google Scholar 

  • Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72:816–821

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K (2001) Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J Orthop Sci 6:28–32

    Article  CAS  PubMed  Google Scholar 

  • Mazzocca AD, Nissen CW, Geary M, Adams DJ (2003) Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament. J Knee Surg 16:148–151

    PubMed  Google Scholar 

  • McLean SG, Huang X, Su A, Van Den Bogert AJ (2004) Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech (Bristol, Avon) 19:828–38

    Article  Google Scholar 

  • McLean SG, Andrish JT, van den Bogert AJ (2005) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 33:1106; author reply −7

    Article  PubMed  Google Scholar 

  • Meyer EG, Haut RC (2008) Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 41:3377–3383

    Article  PubMed  Google Scholar 

  • Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13:71–78

    Article  PubMed  Google Scholar 

  • Oiestad BE, Engebretsen L, Storheim K, Risberg MA (2009) Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med 37:1434–1443

    Article  PubMed  Google Scholar 

  • Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32:1002–1012

    Article  PubMed  Google Scholar 

  • Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R (2005) Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. BMJ 330:449

    Article  PubMed Central  PubMed  Google Scholar 

  • Quatman CE, Hewett TE (2009) The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br J Sports Med 43:328–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ (2007) Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech (Bristol, Avon) 22:681–8

    Article  Google Scholar 

  • Shin CS, Chaudhari AM, Andriacchi TP (2007) The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech 40:1145–1152

    Article  PubMed  Google Scholar 

  • Shin CS, Chaudhari AM, Andriacchi TP (2009) The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J Biomech 42:280–285

    Article  PubMed Central  PubMed  Google Scholar 

  • Speer KP, Spritzer CE, Bassett FH 3rd, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20:382–389

    Article  CAS  PubMed  Google Scholar 

  • Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112–117

    Article  PubMed  Google Scholar 

  • Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2006) The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech (Bristol, Avon) 21:977–83

    Article  Google Scholar 

  • Yamazaki J, Muneta T, Ju YJ, Morito T, Okuwaki T, Sekiya I (2011) Hip acetabular dysplasia and joint laxity of female anterior cruciate ligament-injured patients. Am J Sports Med 39:410–414

    Article  PubMed  Google Scholar 

  • Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon) 21:297–305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Koga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Koga, H., Muneta, T., Bahr, R., Engebretsen, L., Krosshaug, T. (2015). Video Analysis of ACL Injury Mechanisms Using a Model-Based Image-Matching Technique. In: Kanosue, K., Ogawa, T., Fukano, M., Fukubayashi, T. (eds) Sports Injuries and Prevention. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55318-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55318-2_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55317-5

  • Online ISBN: 978-4-431-55318-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics