Skip to main content

In Vivo Ca2+ Imaging of Neuronal Activity

  • Chapter
  • First Online:
Methods in Neuroethological Research

Abstract

Optical recording that provides both anatomical and physiological data has become an essential research technique for neuroethological studies. In particular, Ca2+ imaging is one of the most popular and useful methods for visualization of spatiotemporal dynamics of neuronal activity. Because Ca2+ is involved in so many fundamental neuronal signaling functions, including transmitter release and induction of synaptic plasticity, Ca2+ imaging can yield information that is crucial for a thorough understanding of these processes. In this chapter, we summarize aspects of Ca2+-sensitive dyes that must be considered during the selection of an appropriate indicator for the specific question being investigated. We also discuss the development of dye-loading protocols, experimental designs, and optical system configurations that are required to enable the effective use of these Ca2+-sensitive indicators. As an example application, we demonstrate how Ca2+ imaging of the cricket cercal sensory system in vivo has enabled us to monitor pre- and postsynaptic activity simultaneously on specific dendrites of an identified neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8:988–990

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Shamma SA, Kanold PO (2010) Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13:361–368

    Article  PubMed  CAS  Google Scholar 

  • Bonnot A, Mentis GZ, Skoch J, O’Donovan MJ (2005) Electroporation loading of calcium-sensitive dyes into the CNS. J Neurophysiol 93:1793–1808

    Article  PubMed  Google Scholar 

  • Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc Natl Acad Sci USA 89:4139–4143

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475:501–505

    Article  PubMed  CAS  Google Scholar 

  • Delaney K, Davison I, Denk W (2001) Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli. Eur J Neurosci 13:1658–1672

    Article  PubMed  CAS  Google Scholar 

  • Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889

    Article  PubMed  CAS  Google Scholar 

  • Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57

    Article  PubMed  CAS  Google Scholar 

  • Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1:380–386

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A, Flores J (1997) Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording. J Neurosci Methods 72:97–108

    Article  PubMed  CAS  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  PubMed  CAS  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  • Hovis KR, Padmanabhan K, Urbana NN (2010) A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits. J Neurosci Methods 19:1–10

    Article  Google Scholar 

  • Jacobs GA, Miller JP, Murphey RK (1986) Cellular mechanisms underlying directional sensitivity of an identified sensory interneuron. J Neurosci 6:2298–2311

    PubMed  CAS  Google Scholar 

  • Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Landolfa MA, Miller JP (1995) Stimulus–response properties of cricket cercal filiform receptors. J Comp Physiol A 177:749–757

    Google Scholar 

  • Lipp P, Niggli E (1993) Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium 14:339–372

    Article  Google Scholar 

  • Miller JP, Jacobs GA, Theunissen FE (1991) Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons. J Neurophysiol 66:1680–1689

    PubMed  CAS  Google Scholar 

  • Murayama M, Pérez-Garci E, Lüscher HR, Larkum ME (2007) Fiberoptic system for recording dendritic calcium signals in layer 5 neocortical pyramidal cells in freely moving rats. J Neurophysiol 98:1791–1805

    Article  PubMed  Google Scholar 

  • Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ, Pieribone VA, Chen WR (2007) In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53:789–803

    Article  PubMed  CAS  Google Scholar 

  • Nemoto T (2008) Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs. Mol Cells 26:113–120

    PubMed  CAS  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Miller JP (2006) Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging. J Neurobiol 66:293–307

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Cummins GI, Jacobs GA, Oka K (2008) Dendritic design implements algorithm for extraction of sensory information. J Neurosci 28:4592–4603

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Oka K (2008) In vivo calcium imaging of mushroom body calyx in the tethered cricket for odor-taste conditioning. Program No. 362.20. Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, 2008

    Google Scholar 

  • Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13:353–360

    Article  PubMed  CAS  Google Scholar 

  • Sachse S, Galizia G (2002) Role of Inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Sato TR, Gray NW, Mainen ZF, Svoboda K (2007) The functional microarchitecture of the mouse barrel cortex. PLoS Biol 5:e189

    Article  PubMed  Google Scholar 

  • Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540

    Article  PubMed  CAS  Google Scholar 

  • Single S, Borst A (1998) Dendritic integration and its role in computing image velocity. Science 281:1848–1850

    Article  PubMed  CAS  Google Scholar 

  • Smith SL, Häusser M (2010) Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat Neurosci 13:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, Moede T, Köhler M, Wilbertz J, Leibiger B, Ricordi C, Leibiger IB, Caicedo A, Berggren P (2008) Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 14:574–578

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  PubMed  CAS  Google Scholar 

  • Takahara Y, Matsuki N, Ikegaya Y (2011) Nipkow confocal imaging from deep brain tissues. J Integr Neurosci 10:121–129

    Article  PubMed  Google Scholar 

  • Takahashi N, Sasaki T, Matsumoto W, Matsuki N, Ikegaya Y (2010) Circuit topology for synchronizing neurons in spontaneously active networks. Proc Natl Acad Sci USA 107:10244–10249

    Article  PubMed  CAS  Google Scholar 

  • Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP (1996) Information theoretic analysis of dynamical encoding by four primary sensory interneurons in the cricket cercal system. J Neurophysiol 75:1345–1376

    PubMed  CAS  Google Scholar 

  • Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  PubMed  CAS  Google Scholar 

  • Varga Z, Jia H, Sakmann B, Konnerth A (2011) Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc Natl Acad Sci USA 108:15420–15425

    Article  PubMed  CAS  Google Scholar 

  • Wachowiak M, Denk W, Friedrich RW (2004) Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc Natl Acad Sci USA 101:9097–9102

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Ogawa, H., Miller, J.P. (2013). In Vivo Ca2+ Imaging of Neuronal Activity. In: Ogawa, H., Oka, K. (eds) Methods in Neuroethological Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54331-2_5

Download citation

Publish with us

Policies and ethics