Skip to main content

Operadic Construction of the Renormalization Group

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

Abstract

First, we give a functorial construction of a group associated to a symmetric operad. Applied to the endomorphism operad it gives the group of formal diffeomorphisms. Second, we associate a symmetric operad to any family of decorated graphs stable by contraction. In the case of Quantum Field Theory models it gives the renormalization group. As an example we get an operadic interpretation of the group of “diffeographisms” attached to the Connes–Kreimer Hopf algebra.

Professor Jean-Louis Loday passed away on 6 June 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the meaning of a formal power series (cf. [5, Chap. 2]) the notation \(\overrightarrow{\mathrm{y} } =\overrightarrow{\mathrm{f} }(\overrightarrow{\mathrm{x} })\) is just an abbreviation of the formal sum in the right hand side of (1), which in turn, is nothing but just the list of coefficients \((f_{\nu ;\mu _{1},\ldots ,\mu _{n}})_{\nu ,\mu _{1},\ldots ,\mu _{n}\,=\,1}^{N}\). One defines the formal derivative series \(\frac{{\partial }^{m}{ \overrightarrow{f}}} {\partial x_{\nu _{1}}\cdots \partial x_{\nu _{m}}}{({\overrightarrow{X}})}\) : = \(\sum \limits _{ n\,=\,1}^{\infty }\frac{1} {n!}\) \(\sum \limits _{ \mu _{1},\ldots ,\mu _{n}\,=\,1}^{N}\overrightarrow{\mathrm{f} }_{\nu _{1},\ldots ,\nu _{m},\mu _{1},\ldots ,\mu _{n}}\) \(x_{\mu _{1}}\cdots x_{\mu _{n}}\) and then the coefficient \(\overrightarrow{\mathrm{f} }_{\nu _{1},\ldots ,\nu _{m}}\) coincides with the leading term of the derivative series \(\frac{{\partial }^{m}\overrightarrow{\mathrm{f} }} {\partial x_{\nu _{1}}\cdots \partial x_{\nu _{m}}}{\bigl (\overrightarrow{\mathrm{x} }\bigr )}\). In particular, the coefficients \(\overrightarrow{\mathrm{f} }_{\nu _{1},\ldots ,\nu _{m}}\) must be symmetric in the indices, which is equivalent to the symmetry of the derivatives.

  2. 2.

    Equation (3) follows from the formula for the nth formal derivative of the composition series \(\overrightarrow{g}{\rm o}\overrightarrow{f}(\overrightarrow{X})\)

    $$\displaystyle\begin{array}{rcl} \frac{{\partial }^{n}h_{\mu }} {\partial x_{\mu _{1}}\cdots \partial x_{\mu _{n}}}{\bigl (\overrightarrow{\mathrm{x} }\bigr )}\,& =& \displaystyle\sum \limits _{\mathfrak{P}\, \in \,\mathrm{Part}\{1,\ldots ,n\}}\ \displaystyle\sum \limits _{\rho _{1},\ldots ,\rho _{k}\,=\,1}^{N}\ {\Bigl ( \frac{{\partial }^{k}g_{\nu }} {\partial x_{\rho _{1}}\cdots \partial x_{\rho _{k}}} \circ \overrightarrow{\mathrm{f} }\Bigr )}{\bigl (\overrightarrow{\mathrm{x} }\bigr )}\, \\ & & \times \, \frac{{\partial }^{j_{1}}f_{\rho _{ 1}}} {\partial \mu _{i_{1,1}}\cdots \partial \mu _{i_{1,j_{ 1}}}} {\bigl (\overrightarrow{\mathrm{x} }\bigr )}\cdots \frac{{\partial }^{j_{k}}f_{\rho _{ k}}} {\partial \mu _{i_{k,1}}\cdots \partial \mu _{i_{k,j_{ k}}}}{\bigl (\overrightarrow{\mathrm{x} }\bigr )}, \\ \end{array}$$

    which in turn is derived by induction in n.

  3. 3.

    Thus, \(f_{n}(x_{1;1},\ldots ,x_{1;N}; \ldots ; x_{n;1},\ldots ,x_{n;N})_{\nu }\) : = \(\sum \limits _{ \mu _{1},\ldots ,\mu _{n}\,=\,1}^{N}f_{\nu ;\mu _{1},\ldots ,\mu _{n}}\) \(x_{1;\mu _{1}}\cdots x_{n;\mu _{n}}\).

  4. 4.

    i is the ith operadic partial composition.

  5. 5.

    In terms of formal power series; note that the series K →  → ; ε) starts from n = 1 but for U → ; ε) we do not have such a restriction.

  6. 6.

    However, we remark that the algebra structure induced by the monoid structure of \(\mathfrak{M}(n)\) is quite different from the algebra structure on the space of diagrams that is usually used in the Connes–Kreimer approach.

References

  1. Brunetti, R., Duetsch, M., Fredenhagen, K.: Adv. Theor. Math. Phys. 13, 1–56 (2009)

    MathSciNet  Google Scholar 

  2. Chapoton, F.: Rooted trees and an exponential-like series [arXiv:math/0209104]

    Google Scholar 

  3. Connes, A., Kreimer, D.: Comm. Math. Phys. 199, 203–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frabetti, A.: J. Algebra 319(1), 377–413 (2008)

    Google Scholar 

  5. Lang, S.: Complex analysis, 4th edn. In: Graduate Texts in Mathematics, vol. 103. Springer, New York, (1999)

    Google Scholar 

  6. Loday, J.-L., Vallette, B.: Algebraic operads. In: Grundlehren Math. Wiss. vol. 346. Springer, Heidelberg (2012)

    Google Scholar 

  7. Loday, J.-L., Nikolov, N.M.: Renormalization from the operadic point of view (in preparation)

    Google Scholar 

  8. Nikolov, N.M.: Anomalies in quantum field theory and cohomologies of configuration spaces [arXiv:0903.0187]

    Google Scholar 

  9. Stora, R.: Causalité et Groupes de Renormalisation Perturbatifs. In: Boudjedaa, T., Makhlouf, A. (eds.) Théorie Quantique des Champs Méthode et Applications, p. 67 (2007)

    Google Scholar 

Download references

Acknowledgements

We thank Dorothea Bahns, Kurusch Ebrahimi-Fard, Alessandra Frabetti, Klaus Fredenhagen and Raymond Stora for fruitful discussions. The work was partially supported by the French-Bulgarian Project Rila under the contract Egide-Rila N112 and by grant DO 02-257 of the Bulgarian National Science Foundation. N.N. thanks the Courant Research Center “Higher order structures in mathematics” (Göttingen) and the II. Institute for Theoretical Physics at the University of Hamburg for support and hospitality.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Loday, JL., Nikolov, N.M. (2013). Operadic Construction of the Renormalization Group. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_13

Download citation

Publish with us

Policies and ethics