Skip to main content

Distribution of Piezophiles

  • Reference work entry
Extremophiles Handbook

Numerous cold deep-sea adapted microorganisms (piezophilic, formerly referred to as “barophilic” bacteria) have been isolated using deep-sea research submersibles and/or several sediment/animal sampling systems. Many of the isolates from cold sea bottom are novel psychrophilic bacteria, and we have identified several new piezophilic species, that is, Photobacterium profundum, Shewanella violacea, Moritella japonica, Moritella yayanosii, Psychromonas kaikoi, and Colwellia piezophila. These piezophiles involve five genera in gamma-Proteobacteria subgroup and produce significant amounts of unsaturated fatty acids in their cell membrane fractions to maintain the membrane fluidity in cold and high-pressure environments. Piezophilic microorganisms have been identified in deep-sea bottoms of many of the world’s oceans. Therefore, these microbes are well distributed on our planet. This chapter focuses on the distribution and taxonomy of the piezophilic microorganisms and their growth habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K and Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol BioSyst 6:1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    PubMed  CAS  Google Scholar 

  • Bartlett DH (1999) Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol 1:93–100

    PubMed  CAS  Google Scholar 

  • Beijerinck MW (1889) Le Photobacterium luminosum, Bactérie luminosum de la Mer Nord. Arch Néerl Sci 23:401–427 (in French)

    Google Scholar 

  • Bowmam JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int J Syst Bacteriol 48:1171–1180

    Article  CAS  Google Scholar 

  • Colwell RR, Morita RY (1964) Reisolation and emendation of description of Vibrio marinus (Russell) Ford. J Bacteriol 88:831–837

    PubMed  CAS  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    PubMed  CAS  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    PubMed  CAS  Google Scholar 

  • Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The nucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920

    PubMed  CAS  Google Scholar 

  • Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus Colwellia gen. nov. Syst Appl Microbiol 10:152–160

    Article  Google Scholar 

  • Fang J, Barcelona MJ, Nogi Y, Kato C (2000) Biochemocal function and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Mariana Trench at 11, 000 meters. Deep-Sea Res 147:1173–1182

    Google Scholar 

  • Fang J, Chan O, Kato C, Sato T, Peeples T, Niggemeyer K (2003) Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38:885–887

    Article  PubMed  CAS  Google Scholar 

  • Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833

    Article  PubMed  CAS  Google Scholar 

  • Jensen MJ, Tebo BM, Baumann P, Mandel M, Nealson KH (1980) Characterization of Alteromonas hanedai (sp. nov.), a non-fermentative luminous species of marine origin. Curr Microbiol 3:311–315

    Article  Google Scholar 

  • Kato C (1999) Barophiles (Piezophiles). In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 91–111

    Chapter  Google Scholar 

  • Kato C, Horikoshi K (1996) Gene expression under high pressure. In: Hayashi R, Balny C (eds) Progress in biotechnology 13, high pressure bioscience and biotechnology. Elsevier Science BV, Amsterdam, pp 59–66

    Chapter  Google Scholar 

  • Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9

    Article  Google Scholar 

  • Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11,000 m deep Mariana Trench. Extremophiles 1:117–123

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Li L, Nakamura Y, Nogi Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Kato C, Nakasone K, Qureshi MH, Horikoshi K (2000) How do deep-sea microorganisms respond to changes in environmental pressure? In: Storey KB, Storey JM (eds) Cell and molecular response to stress, vol 1, Environmental Stressors and Gene Responses. Elsevier Science BV, Amsterdam, pp 277–291

    Google Scholar 

  • Kato C, Sato T, Nogi Y, Nakasone K (2004) Piezophiles: High pressure-adapted marine bacteria. Mar Biotechnol 6:S195–S201

    Google Scholar 

  • Kyo M, Miyazaki E, Tsukioka S, Ochi H, Amitani Y, Tsuchiya T, Aoki T, Takagawa S (1995) The sea trial of “KAIKO”, the full ocean depth research ROV. OCEANS’95 3:1991–1996

    Google Scholar 

  • Leonardo MR, Moser DP, Barbieri E, Brantner CA, MacGregor BJ, Paster BJ, Stackebrandt E, Nealson KH (1999) Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49:1341–1351

    Article  PubMed  CAS  Google Scholar 

  • MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182

    Article  CAS  Google Scholar 

  • Makemson JC, Fulayfil NR, Landry W, Van Ert LM, Wimpee CF, Widder EA, Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Nogi Y (2004) Psychropiezophilic microorganisms. Cell Mol Biol 50:429–436

    PubMed  CAS  Google Scholar 

  • Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846

    Article  PubMed  CAS  Google Scholar 

  • Morita RY (1976) The survival of vegetative microbes. In: Gray TRG, Postgate JR (eds) Cambridge University Press, Cambridge pp 279–298

    Google Scholar 

  • Mountfort DO, Rainey FA, Burghardt J, Kasper F, Stackebrant E (1998) Psychromonas antarcticus gen. nov., sp. nov., A new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 169:231–238

    Article  PubMed  CAS  Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154

    Article  PubMed  CAS  Google Scholar 

  • Nakasone K, Ikegami A, Kawano H, Usami R, Kato C, Horikoshi K (2002) Transcriptional regulation under pressure conditions by the RNA polymerase σ54 factor with a two component regulatory system in Shewanella violacea. Extremophiles 6:89–95

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench, and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:71–77

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998b) Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch Microbiol 170:331–338

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998c) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., isolation of novel piezophilic bacteria from the deep-sea fissure sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Owen R, Legros RM, Lapage SP (1978) Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138

    PubMed  CAS  Google Scholar 

  • Piccard J, Dietz RS (1961) Seven miles down. G.P. Putnum and Sons, New York

    Google Scholar 

  • Pope DH, Smith WP, Swartz RW, Landau JV (1975) Role of bacterial ribosomes in barotolerance. J Bacteriol 121:664–669

    PubMed  CAS  Google Scholar 

  • Schmitz WJ Jr (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33:151–173

    Article  Google Scholar 

  • Schwarz JR, Colwell RR (1975) Abstracts, 75th Annual meeting of the American Society for Microbiology. American Society for Microbiology, Washington DC, p.162

    Google Scholar 

  • Seo HJ, Bae SS, Lee JH, Kim SJ (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1993) Life at the upper temperature border. In: Van Tran Than J, Van Tran Than K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Frontières, Gif-sur-Yvette, pp 195–219

    Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378

    Article  PubMed  CAS  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003a) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003b) Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Boxtel RV (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci USA 78:5212–5215

    Article  PubMed  CAS  Google Scholar 

  • Zobell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am very grateful to Prof. Koki Horikoshi for continued support of my extremophile studies. I also thank my colleagues, Drs. Maria Smorawinska, Lina Li, Takako Sato, Yuichi Nogi and Kaoru Nakasone, for excellent collaboration. Finally, I appreciate the crews of the research ship and members of the submersible operation division at JAMSTEC for their efforts in collecting samples from the deep-sea environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Kato, C. (2011). Distribution of Piezophiles. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_29

Download citation

Publish with us

Policies and ethics