Skip to main content

Thermophilic Protein Folding Systems

  • Reference work entry
Extremophiles Handbook

Introduction

The study of adaptive stress responses was initiated at the molecular level with the observation of dramatic chromosome puffs coupled to the inducible transcription of specific proteins that were observed in Drosophila under heat stress (Ritossa 1962). Since then, stress responses have been observed in virtually all classes of organisms. Although a wide variety of survival strategies are deployed when cells are exposed to environmental challenges, such as heat stress, desiccation, chemical stress, or starvation, usually, the effector proteins are generically referred to as Heat Shock Proteins (HSPs). HSPs are diverse in structure and function, and are usually classified based on their subunit molecular weights. Classes that occur in microorganisms and in the majority of thermophiles include HSP100, HSP90, HSP70, HSP60, and the small HSPs (Trent 1996). Most of these proteins function as molecular chaperones, catalyzing the refolding of denatured proteins and assisting the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aivaliotis M, Macek B, Gnad F, Reichelt P, Mann M, Oesterhelt D (2009) Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum–a representative of the third domain of life. PLoS ONE 4(3):e4777

    Article  PubMed  CAS  Google Scholar 

  • Andra S, Frey G, Nitsch M, Baumeister W, Stetter KO (1996) Purification and structural characterization of the thermosome from the hyperthermophilic archaeum Methanopyrus kandleri. FEBS Lett 379(2):127–131

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM, Logsdon JM, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9(18):1053–1056

    Article  PubMed  CAS  Google Scholar 

  • Barber RD, Ferry JG (2001) Archaeal proteasomes. Meth Enzymol 330:413–424

    Article  PubMed  CAS  Google Scholar 

  • Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11(1):69–78

    Article  PubMed  CAS  Google Scholar 

  • Bergeron LM, Gomez L, Whitehead TA, Clark DS (2009) Self-renaturing enzymes: design of an enzyme-chaperone chimera as a new approach to enzyme stabilization. Biotechnol Bioeng 102(5):1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Bigotti MG, Clarke AR (2005) Cooperativity in the thermosome. J Mol Biol 348(1):13–26

    Article  PubMed  CAS  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1(1):14–21

    Article  PubMed  CAS  Google Scholar 

  • Boonyaratanakornkit BB, Simpson AJ, Whitehead TA, Fraser CM, El-Sayed NM, Clark DS (2005) Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ Microbiol 7(6):789–797

    Article  PubMed  CAS  Google Scholar 

  • Braig K (1998) Chaperonins. Curr Opin Struct Biol 8(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107(2):223–233

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  PubMed  CAS  Google Scholar 

  • Cao A, Wang Z, Wei P, Xu F, Cao J, Lai L (2008) Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii. Biochim Biophys Acta 1784(3):489–495

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PM (2000) Cold stress response in Archaea. Extremophiles 4(6):321–331

    Article  PubMed  CAS  Google Scholar 

  • Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93(1):125–138

    Article  PubMed  CAS  Google Scholar 

  • Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR (2007) Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 26(3):415–426

    Article  PubMed  CAS  Google Scholar 

  • Emmerhoff OJ, Klenk HP, Birkeland NK (1998) Characterization and sequence comparison of temperature-regulated chaperonins from the hyperthermophilic archaeon Archaeoglobus fulgidus. Gene 215(2):431–438

    Article  PubMed  CAS  Google Scholar 

  • Farr GW, Furtak K, Rowland MB, Ranson NA, Saibil HR, Kirchhausen T, Horwich AL (2000) Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100(5):561–573

    Article  PubMed  CAS  Google Scholar 

  • Furutani M, Iida T, Yoshida T, Maruyama T (1998) Group II chaperonin in a thermophilic methanogen. Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J Biol Chem 273(43):28399–28407

    Article  PubMed  CAS  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101(24):9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17(4):952–966

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342(6252):884–889

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Clausen T (2003) Molecular shredders: how proteasomes fulfill their role. Curr Opin Struct Biol 13(6):665–673

    Article  PubMed  CAS  Google Scholar 

  • Guagliardi A, Cerchia L, Bartolucci S, Rossi M (1994) The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci 3(9):1436–1443

    Article  PubMed  CAS  Google Scholar 

  • Guagliardi A, Cerchia L, Rossi M (1995) Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J Biol Chem 270(47):28126–28132

    Article  PubMed  CAS  Google Scholar 

  • Gutsche I, Essen LO, Baumeister W (1999) Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol 293(2):295–312

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Kastenmuller A, Buchner J, Weinkauf S, Braun N (2008) Structural dynamics of archaeal small heat shock proteins. J Mol Biol 378(2):362–374

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10449–10453

    Article  PubMed  CAS  Google Scholar 

  • Iizuka R, So S, Inobe T, Yoshida T, Zako T, Kuwajima K, Yohda M (2004) Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin. J Biol Chem 279(18):18834–18839

    Article  PubMed  CAS  Google Scholar 

  • Iizuka R, Yoshida T, Ishii N, Zako T, Takahashi K, Maki K, Inobe T, Kuwajima K, Yohda M (2005) Characterization of archeal group II chaperonin-ADP-metal fluoride complexes: ımplications that group II chaperonins operate as a “two-stroke engine”. J Biol Chem 280:40375–40383

    Article  PubMed  CAS  Google Scholar 

  • Iizuka R, Sugano Y, Ide N, Ohtaki A, Yoshida T, Fujiwara S, Imanaka T, Yohda M (2008) Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1. J Mol Biol 377(3):972–983

    Article  PubMed  CAS  Google Scholar 

  • Izumi M, Fujiwara S, Takagi M, Kanaya S, Imanaka T (1999) Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl Environ Microbiol 65(4):1801–1805

    PubMed  CAS  Google Scholar 

  • Izumi M, Fujiwara S, Takagi M, Fukui K, Imanaka T (2001) Two kinds of archaeal chaperonin with different temperature dependency from a hyperthermophile. Biochem Biophys Res Commun 280(2):581–587

    Article  PubMed  CAS  Google Scholar 

  • Jacob U, Gaestel M, Katrin E, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    Google Scholar 

  • Kagawa HK, Yaoi T, Brocchieri L, McMillan RA, Alton T, Trent JD (2003) The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon. Mol Microbiol 48(1):143–156

    Article  PubMed  CAS  Google Scholar 

  • Kanzaki T, Ushioku S, Nakagawa A, Oka T, Takahashi K, Nakamura T, Kuwajima K, Yamagishi A, Yohda M (2010) Adaptation of a hyperthermophilic group II chaperonin to relatively moderate temperatures. Protein Eng Des Sel 23:393–402

    Article  PubMed  CAS  Google Scholar 

  • Kida H, Sugano Y, Iizuka R, Fujihashi M, Yohda M, Miki K (2008) Structural and molecular characterization of the prefoldin beta subunit from Thermococcus strain KS-1. J Mol Biol 383(3):465–474

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394(6693):595–599

    Article  PubMed  CAS  Google Scholar 

  • Kim DR, Lee I, Ha SC, Kim KK (2003) Activation mechanism of HSP16.5 from Methanococcus jannaschii. Biochem Biophys Res Commun 307(4):991–998

    Article  PubMed  CAS  Google Scholar 

  • Klumpp M, Baumeister W (1998) The thermosome: archetype of group II chaperonins. FEBS Lett 430(1–2):73–77

    Article  PubMed  CAS  Google Scholar 

  • Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeifer G, Muller V, Deppenmeier U, Gottschalk G, Hartl FU, Hayer-Hartl M (2003) Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278(35):33256–33267

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Schmidt-Krey I, Hebert H, Bergman T, Jornvall H, Ladenstein R (1994) The molecular chaperonin TF55 from the Thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. J Mol Biol 242(4):397–407

    PubMed  CAS  Google Scholar 

  • Kohda J, Kawanishi H, Suehara K, Nakano Y, Yano T (2006) Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J Biosci Bioeng 101(2):131–136

    Article  PubMed  CAS  Google Scholar 

  • Kowalski JM, Kelly RM, Konisky J, Clark DS, Wittrup KD (1998) Purification and functional characterization of a chaperone from Methanococcus jannaschii. Syst Appl Microbiol 21(2):173–178

    Article  PubMed  CAS  Google Scholar 

  • Kusmierczyk AR, Martin J (2003) Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis. Biochem J 371(Pt 3):669–673

    Article  PubMed  CAS  Google Scholar 

  • Laksanalamai P, Maeder DL, Robb FT (2001) Regulation and Mechanism of Action of the Small Heat Shock Protein from the Hyperthermophilic Archaeon Pyrococcus furiosus. J Bacteriol 183(17):5198–5202

    Article  PubMed  CAS  Google Scholar 

  • Laksanalamai P, Pavlov AR, Slesarev AI, Robb FT (2006) Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Biotechnol Bioeng 93(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Laksanalamai P, Narayan S, Luo H, Robb FT (2009) Chaperone action of a versatile small heat shock protein from Methanococcoides burtonii, a cold adapted archaeon. Proteins 75(2):275–281

    Article  PubMed  CAS  Google Scholar 

  • Large AT, Kovacs E, Lund PA (2002) Properties of the chaperonin complex from the halophilic archaeon Haloferax volcanii. FEBS Lett 532(3):309–312

    Article  PubMed  CAS  Google Scholar 

  • Large AT, Goldberg MD, Lund PA (2009) Chaperones and protein folding in the archaea. Biochem Soc Trans 37(Pt 1):46–51

    Article  PubMed  CAS  Google Scholar 

  • Leroux MR, Fandrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18(23):6730–6743

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Rye HS (2006) GroEL-mediated protein folding: making the impossible, possible. Crit Rev Biochem Mol Biol 41(4):211–239

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463(7278):197–202

    Article  PubMed  CAS  Google Scholar 

  • Llorca O, Martin-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM (2001) The “sequential allosteric ring” mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J 20(15):4065–4075

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268(5210):533–539

    Article  PubMed  CAS  Google Scholar 

  • Lund PA, Large AT, Kapatai G (2003) The chaperonins: perspectives from the Archaea. Biochem Soc Trans 31(Pt 3):681–685

    PubMed  CAS  Google Scholar 

  • Lundin VF, Stirling PC, Gomez-Reino J, Mwenifumbo JC, Obst JM, Valpuesta JM, Leroux MR (2004) Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proc Natl Acad Sci USA 101(13):4367–4372

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Laksanalamai P, Robb FT (2009) An exceptionally stable Group II chaperonin from the hyperthermophile Pyrococcus furiosus. Arch Biochem Biophys 486(1):12–18

    Article  PubMed  CAS  Google Scholar 

  • Maeder DL, Weiss RB, Dunn DM, Cherry JL, Gonzalez JM, DiRuggiero J, Robb FT (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152(4):1299–1305

    PubMed  CAS  Google Scholar 

  • Marco S, Urena D, Carrascosa JL, Waldmann T, Peters J, Hegerl R, Pfeifer G, Sack-Kongehl H, Baumeister W (1994) The molecular chaperone TF55. Assessment of symmetry. FEBS Lett 341(2–3):152–155

    Article  PubMed  CAS  Google Scholar 

  • Martin-Benito J, Gomez-Reino J, Stirling PC, Lundin VF, Gomez-Puertas P, Boskovic J, Chacon P, Fernandez JJ, Berenguer J, Leroux MR, Valpuesta JM (2007) Divergent substrate-binding mechanisms reveal an evolutionary specialization of eukaryotic prefoldin compared to its archaeal counterpart. Structure 15(1):101–110

    Article  PubMed  CAS  Google Scholar 

  • Maupin-Furlow JA, Gil MA, Karadzic IM, Kirkland PA, Reuter CJ (2004) Proteasomes: perspectives from the Archaea. Front Biosci 9:1743–1758

    Article  PubMed  CAS  Google Scholar 

  • Meyer AS, Walther D, Millet IS, Doniach S, Frydman J (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113(3):369–381

    Article  PubMed  CAS  Google Scholar 

  • Minuth T, Frey G, Lindner P, Rachel R, Stetter KO, Jaenicke R (1998) Recombinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur J Biochem 258(2):837–845

    Article  PubMed  CAS  Google Scholar 

  • Mitsuzawa S, Kagawa H, Li Y, Chan SL, Paavola CD, Trent JD (2009) The rosettazyme: a synthetic cellulosome. J Biotechnol 143(2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Hays LG, Yates JR 3rd, Clark JI (1999) ATP and the core “alpha-Crystallin” domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 274(42):30190–30195

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Taguchi H, Ishii N, Yoshida M, Suzuki M, Endo I, Miura K, Yohda M (1997) Purification and molecular cloning of the group II chaperonin from the acidothermophilic archaeon, Sulfolobus sp. strain 7. Biochem Biophys Res Commun 236(3):727–732

    Article  PubMed  CAS  Google Scholar 

  • Nitsch M, Klumpp M, Lupas A, Baumeister W (1997) The thermosome: alternating alpha and beta-subunits within the chaperonin of the archaeon Thermoplasma acidophilum. J Mol Biol 267:142–149

    Article  PubMed  CAS  Google Scholar 

  • Nitsch M, Walz J, Typke D, Klumpp M, Essen LO, Baumeister W (1998) Group II chaperonin in an open conformation examined by electron tomography. Nat Struct Biol 5(10):855–857

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki A, Kida H, Miyata Y, Ide N, Yonezawa A, Arakawa T, Iizuka R, Noguchi K, Kita A, Odaka M, Miki K, Yohda M (2008) Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins. J Mol Biol 376(4):1130–1141

    Article  PubMed  CAS  Google Scholar 

  • Okochi M, Matsuzaki H, Nomura T, Ishii N, Yohda M (2005) Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9(2):127–134

    Article  PubMed  CAS  Google Scholar 

  • Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10(7):1711–1722

    PubMed  CAS  Google Scholar 

  • Puhler G, Weinkauf S, Bachmann L, Muller S, Engel A, Hegerl R, Baumeister W (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J 11(4):1607–1616

    PubMed  CAS  Google Scholar 

  • Rechsteiner M, Hoffman L, Dubiel W (1993) The multicatalytic and 26 S proteases. J Biol Chem 268(9):6065–6068

    PubMed  CAS  Google Scholar 

  • Reimann B, Bradsher J, Franke J, Hartmann E, Wiedmann M, Prehn S, Wiedmann B (1999) Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15(5):397–407

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature showck and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Robb FT, Maeder DL (1998) Novel evolutionary histories and adaptive features of proteins from hyperthermophiles. Curr Opin Biotechnol 9(3):288–291

    Article  PubMed  CAS  Google Scholar 

  • Roy SK, Hiyama T, Nakamoto H (1999) Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. Eur J Biochem 262(2):406–416

    Article  PubMed  CAS  Google Scholar 

  • Ruepp A, Rockel B, Gutsche I, Baumeister W, Lupas AN (2001) The Chaperones of the archaeon Thermoplasma acidophilum. J Struct Biol 135(2):126–138

    Article  PubMed  CAS  Google Scholar 

  • Schoehn G, Hayes M, Cliff M, Clarke AR, Saibil HR (2000a) Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. J Mol Biol 301(2):323–332

    Article  PubMed  CAS  Google Scholar 

  • Schoehn G, Quaite-Randall E, Jimenez JL, Joachimiak A, Saibil HR (2000b) Three conformations of an archaeal chaperonin, TF55 from Sulfolobus shibatae. J Mol Biol 296(3):813–819

    Article  PubMed  CAS  Google Scholar 

  • Shashidharamurthy R, Koteiche HA, Dong J, Mchaourab HS (2005) Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280:5281–5289

    Article  PubMed  CAS  Google Scholar 

  • Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K (2004) Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J Mol Biol 335(5):1265–1278

    Article  PubMed  CAS  Google Scholar 

  • Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103(4):621–632

    Article  PubMed  CAS  Google Scholar 

  • Sigler PB, Horwich AL (1995) Unliganded GroEL at 2.8 A: structure and functional implications. Philos Trans R Soc Lond B Biol Sci 348(1323):113–119

    Article  PubMed  CAS  Google Scholar 

  • Spreter T, Pech M, Beatrix B (2005) The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J Biol Chem 280(16):15849–15854

    Article  PubMed  CAS  Google Scholar 

  • Stirling PC, Lundin VF, Leroux MR (2003) Getting a grip on non-native proteins. EMBO Rep 4(6):565–570

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5(7):766–774

    Article  PubMed  CAS  Google Scholar 

  • Thomas AS, Elcock AH (2004) Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperature. J Am Chem Soc 126:2208–2214

    Article  PubMed  CAS  Google Scholar 

  • Trent JD (1996) A review of acquired thermotolerance, heat-shock proteins, and molecular chaperones in archaea. FEMS Microbiol Rev 18(2–3):249–258

    Article  CAS  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl FU, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354(6353):490–493

    Article  PubMed  CAS  Google Scholar 

  • Trent JD, Kagawa HK, Yaoi T, Olle E, Zaluzec NJ (1997) Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA 94(10):5383–5388

    Article  PubMed  CAS  Google Scholar 

  • Usui K, Yoshida T, Maruyama T, Yohda M (2001) Small heat shock protein of a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, exists as a spherical 24 mer and its expression is highly induced under heat-stress conditions. J Biosci Bioeng 92(2):161–166

    PubMed  CAS  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93(5):863–873

    Article  PubMed  CAS  Google Scholar 

  • Vetriani C, Maeder DL, Tolliday N, Yip KS, Stillman TJ, Britton KL, Rice DW, Klump HH, Robb FT (1998) Protein thermostability above 100°C: a key role for ionic interactions. Proc Natl Acad Sci USA 95(21):12300–12305

    Article  PubMed  CAS  Google Scholar 

  • Waldmann T, Lupas A, Kellermann J, Peters J, Baumeister W (1995) Primary structure of the thermosome from Thermoplasma acidophilum. Biol Chem Hoppe Seyler 376(2):119–126

    Article  PubMed  CAS  Google Scholar 

  • Whitehead TA, Boonyaratanakornkit BB, Hollrigl V, Clark DS (2007) A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii. Protein Sci 16(4):626–634

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Fujiwara S, Kohda K, Takagi M, Imanaka T (1997) In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl Environ Microbiol 63(2):785–789

    PubMed  CAS  Google Scholar 

  • Yoshida T, Yohda M, Iida T, Maruyama T, Taguchi H, Yazaki K, Ohta T, Odaka M, Endo I, Kagawa Y (1997) Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J Mol Biol 273(3):635–645

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ideno A, Hiyamuta S, Yohda M, Maruyama T (2001) Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol Microbiol 39(5):1406–1413

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ideno A, Suzuki R, Yohda M, Maruyama T (2002a) Two kinds of archaeal group II chaperonin subunits with different thermostability in Thermococcus strain KS-1. Mol Microbiol 44(3):761–769

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Kawaguchi R, Maruyama T (2002b) Nucleotide specificity of an archaeal group II chaperonin from Thermococcus strain KS-1 with reference to the ATP-dependent protein folding cycle. FEBS Lett 514(2–3):269–274

    Article  PubMed  CAS  Google Scholar 

  • Zako TIR, Okochi M, Nomura T, Ueno T, Tadakuma H, Yohda M, Funatsu T (2005) Facilitated release of substrate protein from prefoldin by chaperonin. FEBS Lett 579(17):3718–3724

    Article  PubMed  CAS  Google Scholar 

  • Zako T, Murase Y, Iizuka R, Yoshida T, Kanzaki T, Ide N, Maeda M, Funatsu T, Yohda M (2006) Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate. J Mol Biol 364(1):110–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463(7279):379–383

    Article  PubMed  CAS  Google Scholar 

  • Zwickl P, Grziwa A, Puhler G, Dahlmann B, Lottspeich F, Baumeister W (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31(4):964–972

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank T. Robb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Luo, H., Robb, F.T. (2011). Thermophilic Protein Folding Systems. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_27

Download citation

Publish with us

Policies and ethics