Skip to main content

IL-17A and Th17 cells as therapeutic targets for autoimmune diseases

  • Chapter
Th 17 Cells: Role in Inflammation and Autoimmune Disease

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The definition of the CD3+ CD4+ Th17 cell subset and the identification of the IL-23-Th17 axis have introduced new paradigms to explain the origin of autoimmune events in animal models, subverting the established Th1-Th2 paradigm. IL-17A has been pivotal for the discovery of the Th17 lineage, which probably evolved as an arm of the adaptive immune system for host protection against extracellular bacteria and fungi. IL-17A, is the founding member of the IL-17 family composed of six members. Th17 cells and IL-17A have been implicated in a variety of inflammatory and autoimmune diseases in rodents. In these models, Th17 cells are pivotal in the pathogenesis of the disease and IL-17A appears to be the main mediator, but the situation might be different in humans. In some human pathological conditions, in addition to Th17 cells, other IL-17A-producing cells have been described, including CD8+ T cells, astrocytes, macrophages and Langerhans cells. The therapeutic effect of some new biologics can now, at least in part, be explained by their interference with mediators involved in the generation of Th17 cells, but more specific treatments would be valuable to dissect these intricate networks. An antibody neutralizing IL-17A is being evaluated under different autoimmune conditions. This approach might not only benefit patients, but, by neutralizing IL-17A selectively, might also help to define the role of this cytokine in autoimmune disorders and contribute to a new wave of selective and targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821–852

    Article  PubMed  CAS  Google Scholar 

  2. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177: 566–573

    PubMed  CAS  Google Scholar 

  3. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487

    Article  PubMed  CAS  Google Scholar 

  4. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950–957

    Article  PubMed  CAS  Google Scholar 

  5. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70

    Article  PubMed  CAS  Google Scholar 

  6. Tzartos JS, Friese MA, Craner M, Palace J, Newcombe J, Esiri MM, Fugger L (2007) Interleukin-17 production in CNS-infiltrating T-cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172: 146–155

    Article  PubMed  CAS  Google Scholar 

  7. Coury F, Annels N, Rivollier A, Olsson S, Santoro A, Speziani C, Azocar O, Flacher M, Djebali S, Tebib J et al (2008) Langerhans cell histiocytosis reveals a new IL-17Adependent pathway of dendritic cell fusion. Nat Med 14: 81–87

    Article  PubMed  CAS  Google Scholar 

  8. Spriggs, MK (1997) Interleukin-17 and its receptor. J Clin Immunol 17: 366–369

    Article  PubMed  CAS  Google Scholar 

  9. Yao, Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, Spriggs MK (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3: 811–821

    Article  PubMed  CAS  Google Scholar 

  10. Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 14: 155–174

    Article  PubMed  CAS  Google Scholar 

  11. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476

    Article  PubMed  CAS  Google Scholar 

  12. Kawaguchi M, Adachi M, Oda N, Kokubu F, Huang SK (2004) IL-17 cytokine family. J Allergy Clin Immunol 114: 1265–1273

    Article  PubMed  CAS  Google Scholar 

  13. Starnes T, Robertson MJ, Sledge G, Kelich S, Nakshatri H, Broxmeyer HE, Hromas R (2001) Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J Immunol 167: 4137–4140

    PubMed  CAS  Google Scholar 

  14. McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, Finder JD, Pilewski JM, Carreno BM, Goldman SJ et al (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-a and granulocyte colony-stimulating factor in bronchial epithelium: Implications for airway inflammation in cystic fibrosis. J Immunol 175: 404–412

    PubMed  CAS  Google Scholar 

  15. Lubberts E (2003) The role of IL-17 and family members in the pathogenesis of arthritis. Curr Opin Investig Drugs 4: 572–577

    PubMed  CAS  Google Scholar 

  16. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, Wang YH, Schluns KS, Broaddus RR, Zhu Z et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205: 1063–1075

    Article  PubMed  CAS  Google Scholar 

  17. Akimzhanov AM, Yang XO, Dong C (2007) Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem 282: 5969–5972

    Article  PubMed  CAS  Google Scholar 

  18. Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M, Goldman SJ, Dunussi-Joannopoulos K, Williams CMM, Wright JF et al (2007) An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol 179: 7791–7799

    PubMed  CAS  Google Scholar 

  19. Wright JF, Guo Y, Quazi A, Luxenberg DP, Bennett F, Ross JF, Qiu Y, Whitters MJ, Tomkinson KN, Dunussi-Joannopoulos K et al (2007) Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem 282: 13447–13455

    Article  PubMed  CAS  Google Scholar 

  20. Chang SH, Dong C (2007) A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res 17: 435–440

    PubMed  Google Scholar 

  21. Kuestner RE, Taft DW, Haran A, Brandt CS, Brender T, Lum K, Harder B, Okada S, Ostrander CD, Kreindler JL et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179: 5462–5473

    PubMed  CAS  Google Scholar 

  22. Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin DT, Foster JS, Goddard AD, Yansura DG, Vandlen RL, Wood WI et al (2001). IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 276: 1660–1664

    Article  PubMed  CAS  Google Scholar 

  23. Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, Miossec V, Miossec P (2008) IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine. expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol 180: 655–663

    PubMed  CAS  Google Scholar 

  24. Toy D, Kugler D, Wolfson M, Vanden Bos T, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: Interleukin 17 signals through a heteromeric receptor complex. J Immunol 177: 36–39

    PubMed  CAS  Google Scholar 

  25. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8: 639–646

    Article  PubMed  CAS  Google Scholar 

  26. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103: 1345–1352

    Article  PubMed  CAS  Google Scholar 

  27. Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165: 6107–6115

    PubMed  CAS  Google Scholar 

  28. Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR (2008) Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum 58: 875–887

    Article  PubMed  Google Scholar 

  29. Page G, Sattler A, Kersten S, Thiel A, Radbruch A, Miossec P (2004) Plasma cell-like morphology of Th1-cytokine-producing cells associated with the loss of CD3 expression. Am J Pathol 164: 409–417

    PubMed  CAS  Google Scholar 

  30. Liu Y (2002) Uncover the mystery of plasmacytoid dendritic cell precursors or type 1 interferon producing cells by serendipity. Hum Immunol 63: 1067–1071

    Article  PubMed  CAS  Google Scholar 

  31. Fricke I, Mitchell D, Mittelsta J, Lehan N, Heine H, Goldmann T, Bohle A, Brandau S (2006) Mycobacteria induce IFN-? production in human dendritic cells via triggering of TLR2. J Immunol 176: 5173–5182

    PubMed  CAS  Google Scholar 

  32. Teunissen MB, Koomen CW, de Waal Malefyt R, Wierenga EA, Bos JD (1998) Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 111: 645–649

    Article  PubMed  CAS  Google Scholar 

  33. Li J, Li D, Tan Z (2004) The expression of interleukin-17, interferon-gamma, and macrophage inflammatory protein-3 alpha mRNA in patients with psoriasis vulgaris. J Huazhong Univ Sci Technol Med Sci 24: 294–296

    PubMed  CAS  Google Scholar 

  34. Arican O, Aral M, Sasmaz S, Ciragil P (2005) Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005: 273–279

    Article  PubMed  CAS  Google Scholar 

  35. Bos JD, Hagenaars C, Das PK Krieg SR, Voorn WJ, Kapsenberg ML (1989) Predominance of’ memory’ T cells (CD4+, CDw29+) over’ naive’ T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch Dermatol Res 281: 24–30

    Article  PubMed  CAS  Google Scholar 

  36. Bos JD, Zonneveld I, Das PK Krieg SR, van der Loos CM, Kapsenberg ML (1987) The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol 88: 569–573

    Article  PubMed  CAS  Google Scholar 

  37. Bovenschen HJ, Seyger MMB, Van De Kerkhof PCM. (2005) Plaque psoriasis vs. atopic dermatitis and lichen planus: A comparison for lesional T-cell subsets, epidermal proliferation and differentiation. Br J Dermatol 153: 72–78

    Article  PubMed  CAS  Google Scholar 

  38. Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP, Krueger JG (2008) Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 128: 1207–1211

    Article  PubMed  CAS  Google Scholar 

  39. Nielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B (2003) Upregulation of interleukin-12 and-17 in active inflammatory bowel disease. Scand J Gastroenterol 38: 180–185

    Article  PubMed  CAS  Google Scholar 

  40. Gottfried E, Kunz-Schughart LA, Weber A, Rehli M, Peuker A, Muller A, Kastenberger M, Brockhoff G, Andreesen R, Kreutz M (2008) Expression of CD68 in non-myeloid cell types. Scand J Immunol 67: 453–463

    Article  PubMed  CAS  Google Scholar 

  41. Friese MA, Fugger L (2005) Autoreactive CD8(+) T cells in multiple sclerosis: A new target for therapy? Brain 128: 1747–1763

    Article  PubMed  Google Scholar 

  42. Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JM (2003) Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia 43: 243–253

    Article  PubMed  Google Scholar 

  43. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8: 500–508

    Article  PubMed  CAS  Google Scholar 

  44. Ishizu T, Osoegawa M, Mei FJ, Kikuchi H, Tanaka M, Takakura Y, Minohara M, Murai H, Mihara F, Taniwaki T et al (2005) Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128: 988–1002

    Article  PubMed  Google Scholar 

  45. Laman JD, Leenen PJM, Annels NE, Hogendoorn PCW, Egeler RM (2003) Langerhanscell histiocytosis’ insight into DC biology’. Trends Immunol 24: 190–196

    Article  PubMed  CAS  Google Scholar 

  46. Hizawa N, Kawaguchi M, Huang SK, Nishimura M (2006) Role of interleukin-17F in chronic inflammatory and allergic lung disease. Clin Exp Allergy 36: 1109–1114

    Article  PubMed  CAS  Google Scholar 

  47. Andoh A, Zhang Z, Inatomi O, Fujino S, Deguchi Y, Araki Y, Tsujikawa T, Kitoh K, Kim-Mitsuyama S, Takayanagi A et al (2005) Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterol 129: 969–984

    Article  CAS  Google Scholar 

  48. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Fariñas MS, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA et al (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204: 3183–3194

    Article  PubMed  CAS  Google Scholar 

  49. Massarotti EM (2008) Clinical and patient-reported outcomes in clinical trials of Abatacept in the treatment of rheumatoid arthritis. Clin Therapeutics 30: 429–442

    Article  CAS  Google Scholar 

  50. Chen Z, Tato CM, Muul L, Laurence A, O’Shea JJ (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum 56: 2936–2946

    Article  PubMed  CAS  Google Scholar 

  51. Ohsugi Y, Kishimoto T (2008) The recombinant humanized anti-IL-6 receptor antibody tocilizumab, an innovative drug for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 8: 669–681

    Article  PubMed  CAS  Google Scholar 

  52. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371: 1665–1674

    Article  PubMed  CAS  Google Scholar 

  53. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, Guzzo C, Hsu MC, Wang Y, Li S et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371: 1675–1684

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Di Padova, F. (2009). IL-17A and Th17 cells as therapeutic targets for autoimmune diseases. In: Quesniaux, V., Ryffel, B., Di Padova, F. (eds) Th 17 Cells: Role in Inflammation and Autoimmune Disease. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8681-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-8681-8_19

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-8680-1

  • Online ISBN: 978-3-7643-8681-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics