Skip to main content

Influence of Al2O3 Nanoparticles on the Thermal Stability of Ultra-Fine Grained Copper Prepared by High Pressure Torsion

  • Chapter
Nanostructured Materials

Summary

Ultra-fine grained (UFG) Cu (grain size 80 nm) containing 0.5wt.% Al2O3 nanoparticles (size 20 nm) was prepared by high pressure torsion (HPT). Positron lifetime spectroscopy was employed to characterize the microstructure of this material, especially with respect to types and concentration of lattice defects. The evolution of microstructure with increasing temperature was studied by positron lifetime spectroscopy and X-ray diffraction measurements. The thermal stability of the Cu + 0.5 wt.% Al2O3 nanocomposite was compared with that of pure UFG Cu prepared by the same technique. The processes taking place during thermal recovery of the initial nanoscale structure in both studied materials are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valiev RZ (1997) Mat Sci Eng A 234–236: 59

    Article  Google Scholar 

  2. Valiev RZ (1995) Nanostructured Mater 6: 73

    Article  CAS  Google Scholar 

  3. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progress in Materials Science 45: 103

    Article  CAS  Google Scholar 

  4. Islamgaliev RK, Chmelík F, Kužel R (1997) Mat Sci Eng A 237: 43

    Article  Google Scholar 

  5. Čížek J, Procházka I, Cieslar M, Kužel R, Kuriplach J, Chmelík F, Stulíková I, Bečvář F, Melikhova O, Islamgaliev RK (2002) Phys Rev B (in press)

    Google Scholar 

  6. Alexandrov IV, Zhang K, Kilmametov AR, Lu K, Lu BZ, Valiev RZ (1997) Mat Sci Eng A 234–236: 331

    Article  Google Scholar 

  7. Valiev RZ, Musalimov RS, Tsenev NK (1989) Phys Stat Sol (A) 115: 451

    Article  CAS  Google Scholar 

  8. Valiev RZ, Alexandrov IV, Islamgaliev RK (1998) In: Chow GM, Noskova NI (eds) Nanocrystalline Materials: Science and Technology, NATO AST Kluwer, p 121

    Google Scholar 

  9. Valiev RZ, Islamgaliev RK (1998) In: Ghosh AK, Bieler TR (eds) Superplasticity and Superplastic Forming 1998. The Minerais, Metals and Material Society, p 117

    Google Scholar 

  10. Čížek J, Procházka I, Vostrý P, Chmelík F, Islamgaliev RK (1999) Acta Phys Pol A 95: 487

    Google Scholar 

  11. Islamgaliev RK, Amirkhanov NM, Bucki JJ, Kurzydlowski KJ (2000) In: Lowe TC, Valiev RZ (eds) Investigations and Applications of Severe Plastic Deformation, NATO Science Series 3: High Technology 80. Kluwer, p 297

    Google Scholar 

  12. Buchgraber W, Islamgaliev RK, Kolobov YUR, Amirkhanov NM (1999) In: NATO ARW. Moscow August 2–9, 1999

    Google Scholar 

  13. Kužel R, Čížek J, Procházka I, Chmelík F, Islamgaliev RK, Amirkhanov NM (2001) In: METAL 2001. Ostrava, Tanger Ltd (CD ROM)

    Google Scholar 

  14. Hautojärvi P, Corbel C (1995) In: Dupasquier A, Mills AP (eds) Proceedings of the International School of Physics “Enrico Fermi”, Course CXXV IOS Press, Varenna, p 491

    Google Scholar 

  15. McKee BTA, Saimoto S, Stewart AT, Scott MJ (1974) Can J Phys 52: 759

    CAS  Google Scholar 

  16. de Lima AP, Lopes Gil C, Martins DR, Ayres de Campos N, Menezes LF, Fernandes JV (1987) In: Dlubek G, Brümmer O, Brauer G, Hennig K (eds) Proceedings od European Meeting on Positron Studies of Defects, vol. 2, part 1. Martin-Luther-Universität Halle-Wittenberg, Wernigerode, p C1

    Google Scholar 

  17. Dupasquier A, Romero R, Somoza A (1993) Phys Rev B 48: 9235

    Article  CAS  Google Scholar 

  18. PDF-2, Powder Diffraction Pattern Database, ICDD (International Centre for Diffraction Data), record number 04–0836

    Google Scholar 

  19. Ungár T, Dragomir I, Revesz I, Borbely A (1999) J Appl Cryst 32: 992

    Article  Google Scholar 

  20. Ungár T, Tichy G (1999) Phys Stat Sol (B) 171: 425

    Article  Google Scholar 

  21. Ungár T, Gubiza J, Ribárik G, Borbély A (2001) J Appl Cryst 34: 298

    Article  Google Scholar 

  22. Kužel R, Čížek J, Procházka I, Chmelík F, Islamgaliev RK, Amirkhanov NM (2001) Mat Sci Forum 378–381: 463

    Google Scholar 

  23. Čížek J (2001) PhD Thesis, Charles University, Prague, Czech Republic

    Google Scholar 

  24. Bečvář F, Čížek J, Leštâk L, Novotný I, Procházka I, Šebesta F (2000) Nucl Instr Meth A 443: 557

    Article  Google Scholar 

  25. Bečvář F, Čížek J, Procházka I (1999) Acta Physica Polonica A 95: 448

    Google Scholar 

  26. Procházka I, Novotný I, Bečvář F (1997) Mat Sci Forum 255–257: 772

    Article  Google Scholar 

  27. Kužel R (1995) DIFPATAN — Program for Powder Pattern Analysis, http://www.xray.cz/priv/kuzel/difpatan

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Čížek, J., Procházka, I., Kužel, R., Islamgaliev, R.K. (2002). Influence of Al2O3 Nanoparticles on the Thermal Stability of Ultra-Fine Grained Copper Prepared by High Pressure Torsion. In: Hofmann, H., Rahman, Z., Schubert, U. (eds) Nanostructured Materials. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6740-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6740-3_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7398-5

  • Online ISBN: 978-3-7091-6740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics