Skip to main content

Transmission, species specificity, and pathogenicity of Aujeszky’s disease virus

  • Conference paper
Viral Zoonoses and Food of Animal Origin

Summary

Aujeszky’s disease virus (ADV), also known as pseudorabies virus (PrV), is an alphaherpesvirus that causes fatal infections in a wide range of animal species. The virus shares a variety of biological properties with human pathogenic herpesviruses like herpes simplex virus or varicella-zoster virus. Although only limited data are available, it seems unlikely that PrV causes disease in immunocompetent humans, but may pose a risk for immunocom-promised patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheung AK (1989) DNA nucleotide sequence analysis of the immediate-early gene of the Indiana-Funkhauser strain of Pseudorabies virus. J Virol 62: 4763–4766

    Google Scholar 

  2. Dubin G, Socolof E, Frank I, Friedman HM (1991) Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol 65: 7046–7050

    PubMed  CAS  Google Scholar 

  3. Enquist LW (1994) Infection of the mammalian nervous system by Pseudorabies virus (PRV). Semin Virol 5: 221–231

    Article  Google Scholar 

  4. Flynn SJ, Ryan P (1996) The receptor-binding domain of Pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant. J Virol 70: 1355–1364

    PubMed  CAS  Google Scholar 

  5. Herold BC, Gerber SI, Belval BJ, Siston AM, Shulman N (1996) Differences in the susceptibility of herpes simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral entry. J Virol 70: 3461–3469

    PubMed  CAS  Google Scholar 

  6. Huemer HP, Larcher C, Coe NE (1992) Pseudorabies virus glycoprotein III derived from virions and infected cells bind to the third component of complement. Virus Res 23: 271–280

    Article  PubMed  CAS  Google Scholar 

  7. Ihara S, Feldman L, Watanabe S, Ben-Porat T (1983) Characterization of the immediate-early functions of Pseudorabies virus. Virology 131: 437–454

    Article  PubMed  CAS  Google Scholar 

  8. Kohl S (1989) The neonatal human’s immune response to herpes simplex virus infection: a critical review. Pediatr Infect Dis J 8: 67–74

    PubMed  CAS  Google Scholar 

  9. Mann SL, Meyers JD, Holmes EX, Corey L (1984) Prevalence and incidence of herpesvirus infections among homosexuelly active men. J Infect Dis 149: 1026

    Article  PubMed  CAS  Google Scholar 

  10. Matthews REF (1982) Classification and nomenclature of viruses. Intervirology 17: 1–200

    Article  Google Scholar 

  11. McNearny TA, Odell C, Holers VM, Spear PG, Atkinson JP (1987) Herpes simplex virus glycoprotein gC-1 and gC-2 bind to the third component of complement and provide protection against complement-mediated neutralization of viral infection. J Exp Med 166: 1525–1535

    Article  Google Scholar 

  12. Morgan C, Rose HM, Mednis B (1968) Electron microscopy of herpes simplex virus I. Entry. J Virol 2: 507–516

    CAS  Google Scholar 

  13. Mravak S, Bienzle U, Feldmeier H, Hampl H, Habermehl KO (1987) Lancet 1: 501–502

    PubMed  CAS  Google Scholar 

  14. Nara PL (1982) Porcine herpesvirus 1. In: Olson JR, Krakown S, Blakesless Jr JR (eds) Comparative pathobiology of viral disease. CRC Press, Boca Raton, pp 90–113

    Google Scholar 

  15. Nii S, Morgan C, Rose HM (1968) Electron microscopy of herpes simplex virus II. Sequence of development. J Virol 2: 517–536

    PubMed  CAS  Google Scholar 

  16. Robbins AK, Watson RJ, Whealy ME, Hays WW, Enquist LW (1986) Characterization of a Pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein C. J Virol 58: 339–347

    PubMed  CAS  Google Scholar 

  17. Sabin AB (1934) The immunological relationships of Pseudorabies (infectious bulbar paralysis, mad itch). Br J Exp Pathol 15: 372–380

    Google Scholar 

  18. Sawitzky D, Hampl H, Habermehl KO (1990) Comparison of heparin-sensitive attachment of Pseudorabies virus and herpes simplex virus type 1 and identification of heparin-binding PrV-glycoproteins. J Gen Virol 71: 1221–1225

    Article  PubMed  CAS  Google Scholar 

  19. Sawitzky D, Hampl H, Habermehl KO (1990) Entry of Pseudorabies virus into CHO cells is blocked at the level of penetration. Arch Virol 115: 309–316

    Article  PubMed  CAS  Google Scholar 

  20. Sawitzky D, Voigt A, Habermehl KO (1993) A peptide-model for the heparin-binding property of Pseudorabies virus glycoprotein III. Med Microbiol Immunol 182: 285–292

    Article  PubMed  CAS  Google Scholar 

  21. Schreurs C, Mettenleiter TC, Zuckermann F, Sugg N, Ben-Porat T (1988) Glycoprotein gIII of Pseudorabies virus is multifunctional. J Virol 62: 2251–2257

    PubMed  CAS  Google Scholar 

  22. Trybala E, Bergström T, Spillmann D, Svennerholm B, Olofsson S, Flynn SJ, Ryan P (1996) Mode of interaction between Pseudorabies virus and heparan sulfate heparin. Virology 218: 35–42

    Article  PubMed  CAS  Google Scholar 

  23. Trybala E, Bergström T, Svennerholm B, Jeansson S, Glorioso JC, Olofsson S (1994) Localization of a functional site on herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulfate. J Gen Virol 75: 743–752

    Article  PubMed  CAS  Google Scholar 

  24. Whealy ME, Robbins AK, Enquist LW (1988) Pseudorabies virus glycoprotein gIII Is required for efficient virus growth in tissue culture. J Virol 62: 2512–2515

    PubMed  CAS  Google Scholar 

  25. WuDunn D, Spear PG (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63: 52–58

    PubMed  CAS  Google Scholar 

  26. Zsak L, Mettenleiter TC, Sugg N, Ben-Porat T (1989) Release of Pseudorabies virus from infected cells is controlled by several viral functions and is modulated by cellular components. J Virol 63: 5475–5477

    PubMed  CAS  Google Scholar 

  27. Zuckermann FA, Mettenleiter TC, Schreuers C, Sugg N, Ben-Porat T (1988) Complex between glycoprotein gl and gp63 of Pseudorabies virus: its effect on virus replication. J Virol 62: 4622–4626

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this paper

Cite this paper

Sawitzky, D. (1997). Transmission, species specificity, and pathogenicity of Aujeszky’s disease virus. In: Kaaden, OR., Czerny, CP., Eichhorn, W. (eds) Viral Zoonoses and Food of Animal Origin. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6534-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6534-8_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83014-7

  • Online ISBN: 978-3-7091-6534-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics