Skip to main content

The neuroprotective and neuronal rescue effects of (—)-deprenyl

  • Conference paper
MAO — The Mother of all Amine Oxidases

Part of the book series: Journal of Neural Transmission. Supplement ((NEURAL SUPPL,volume 52))

Summary

The pharmacological effects of (—)-deprenyl is multi-fold in its nature (dopamine sparing activity, neuroprotective and neuronal rescue effects), which cannot be explained solely by the irreversible MAO-B inhibitory action of the substance. Deprenyl slightly inhibits the re-uptake of noradrenaline and dopamine, but methylamphetamine, the metabolite of the inhibitor, by one order of magnitude is more potent in this respect, than the parent compound. Neither the metabolite nor (—)-deprenyl acts on the uptake of serotonin. The inhibitor has an intensive first pass metabolism after oral treatment. The in vivo pharmacokinetic studies with (—)-deprenyl, using the double labelled radioisotope technique (1.5mg/kg; orally) in rats revealed that the molar concentration of methylamphetamine can reach the level suitable to induce a significant inhibition of amine uptake. Deprenyl, but especially methylamphetamine pre-treatment can prevent the noradrenaline release induced by the noradrenergic neurotoxin DSP-4. The uptake inhibitory effect of (—)-deprenyl and the metabolites is reversible. After repeated administration of (—)-deprenyl (1.5mg/kg daily, for 8 days) sustained concentration of its metabolites was detected, compared to that of the acute studies. This can at least partly explain why (—)deprenyl should be administered daily to evoke therapeutic effects in Parkinson’s disease. Administration of (-)deprenyl in a low dose, following the toxic insult, can rescue the damaged neurones. The neuronal rescue effect of the drug was studied on M-1 human melanoma cells in tissue culture. The inhibitor reduced the apoptosis of serum-deprived M-1 cells, but the ( + )-isomer failed to exert this effect. The (±)-desmethyl-deprenyl almost lacks the property to inhibit apoptosis. For neuroprotection and neuronal rescue an optimal dose of (—)-deprenyl should be administered, because to reach a well balanced concentration of the metabolites in tissues is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansari KS, Tatton WG, Yu PH, Kruck TPA (1993) Rescue of axotomised immature rat facial motoneurons by R(—)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J Neurosci 13: 4042–4053

    CAS  PubMed  Google Scholar 

  • Barber AJ, Paterson IA, Gelowitz DL, Voll CL (1993) Deprenyl protects rat hippocam-pal pyramidal cells from ischaemic insult. Soc Neurosci Abstr 19: 1646

    Google Scholar 

  • Berry MD, Juorio AV, Paterson IA (1994) The functional role of monoamine oxidases A and B in the mammalian central nervous system. Prog Neurobiol 42: 375–391

    Article  CAS  PubMed  Google Scholar 

  • Bey P, Fozard J, McDonald I, Palfreyman MG, Zreika M (1984) MDL 72145: a potent and selective inhibitor of MAO type B. Br J Pharmacol 81: 50P

    Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Martin J (1985) Increased life expectancy resulting from addition of L-Deprenyl to MadoparR treatment in Parkinson’s disease: a long-term study. J Neural Transm 64: 113–128

    Article  CAS  PubMed  Google Scholar 

  • Carrillo MC, Kanai S, Nokubo M, Kitani K (1991) (—)-deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 48: 517–521

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Spina MB (1989) Deprenyl suppresses the oxidant stress associated with increased dopamine turn-over. Ann Neurol 26: 689–690

    Article  CAS  PubMed  Google Scholar 

  • Dudley MW, Howard BD, Cho AK (1990) The interaction of the beta-haloethyl benzylamines, xylamine and DSP-4 with catecholaminergic neurones. Annu Rev Pharmacol Toxicol 30: 387–403

    Article  CAS  PubMed  Google Scholar 

  • Finnegan KT, Skratt JS, Irwin I, DeLanney LE, Langston JW (1990) Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO-B. Eur J Pharmacol 184: 119–126

    Article  CAS  PubMed  Google Scholar 

  • Gibson CJ (1987) Inhibition of MAO-B, but not MAO-A blocks DSP-4 toxicity on central NE neurones. Eur J Pharmacol 141: 135–138

    Article  CAS  PubMed  Google Scholar 

  • Glover V, Gibb C, Sandler M (1986) The role of MAO in MPTP toxicity — a review. J Neural Transm [Suppl 20]: 65–76

    Google Scholar 

  • Heinonen EH, Myllyla V, Sotaniemi K, Lammintausta R, Salonen JS, Anttila M, et al (1989) Pharmacokinetics and metabolism of selegiline. Acta Neurol Scand 126: 93–99

    CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with (—)-deprenyl. Mech Aging Dev 46: 237–262

    Article  CAS  PubMed  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408

    CAS  PubMed  Google Scholar 

  • Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B (1965) Phenylisopropylmethyl-propinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther 155: 154–164

    CAS  PubMed  Google Scholar 

  • Ladányi A, Timár J, Paku S, Molnár G, Lapis K (1990) Selection and characterization of human melanoma lines with different liver-colonizing capacity. Int J Cancer 46: 456–461

    Article  PubMed  Google Scholar 

  • Lai CT, Zuo DM, Yu PH (1994) Is brain superoxide dismutase activity increased following chronic treatment with L-deprenyl? J Neural Transm 41: 221–229

    CAS  Google Scholar 

  • Langston JW (1990) (—)-deprenyl as neuroprotective therapy in Parkinson’s disease: concepts and controversies. Neurology [Suppl 3] 40: 61–66

    PubMed  Google Scholar 

  • Magyar K (1992) Pharmacology of monoamine oxidase type B inhibitors. In: Szelenyi I (ed) Inhibitors of monoamine oxidase B. Birkhäuser, Basel, pp 125–143

    Google Scholar 

  • Magyar K (1994) Behaviour of (—)-deprenyl and its analogues. J Neural Transm 41:167–175

    CAS  Google Scholar 

  • Magyar K (1996a) The role of the metabolism of (—)-deprenyl in neuroprotection. J Neurochem 66[Suppl 2]: S20 D

    Google Scholar 

  • Magyar K (1996b) The role of the metabolism of (—)-deprenyl in neuroprotection. J Neurochem (in press)

    Google Scholar 

  • Magyar K, Szüts T (1982) The fate of (—)-deprenyl in the body. Preclinical studies. In: Proceedings of the International Symposium on (—)-deprenyl, Jumex, Szombathely, Hungary, pp 25–31

    Google Scholar 

  • Magyar K, Tóthfalusi L (1984) Pharmacokinetic aspects of deprenyl effects. Pol J Pharmacol Pharm 36: 373–384

    Article  CAS  PubMed  Google Scholar 

  • Magyar K, Vizi ES, Ecseri Z, Knoll J (1967) Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methyl-propinylamine (E-250). Acta Physiol Hung 32: 377–387

    CAS  Google Scholar 

  • Magyar K, Lengyel J, Szatmári I, Gaál J (1995) The distribution of orally administered (—)-deprenyl-propargyl-14C and (—)-deprenyl-phenyl-3H in rat brain. Prog Brain Res 106: 143–153

    Article  CAS  PubMed  Google Scholar 

  • Magyar K, Szende B, Lengyel J, Tekes K (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in (—)-deprenyl research. J Neural Transm 48: 29–43

    CAS  Google Scholar 

  • Nagatsu T, Hirata Y (1987) Inhibition of the tyrosine hydroxylase system by MPTP, 1-methyl-4-phenylpiridinium ion (MPP+) and the structurally related compounds in vitro and in vivo. Eur Neurol 26[Suppl 1]: 11

    Article  CAS  PubMed  Google Scholar 

  • Reynolds GP, Elsworth JD, Blau K, Sandler M, Lees AJ, Stern GM (1978) Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol 6: 542–544

    Article  CAS  PubMed  Google Scholar 

  • Ross SB, Renyi AL (1976) On the long-lasting inhibitory effect of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on the active uptake of adrenaline. J Pharm Pharmacol 28: 458–459

    Article  CAS  PubMed  Google Scholar 

  • Schachter M, Marsden CD, Parkes JD, Jenner P, Testa B (1980) Deprenyl in the management of response fluctuations in patients with Parkinson’s disease on levodopa. J Neurol Neurosurg Psychiatry 43: 1016–1021

    Article  CAS  PubMed  Google Scholar 

  • Strolin-Benedetti M, Dostert P (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol 38: 555–561

    Article  CAS  PubMed  Google Scholar 

  • Szökö É, Magyar K (1995) Chiral separation of deprenyl and its major metabolites using cyclodextrin-modified capillary zone electrophoresis. J Chromatogr A 709: 157–162

    Article  Google Scholar 

  • Szökö É, Magyar K (1996) Enantiomer identification of the major metabolites of (—)-deprenyl in rat urine by capillary electrophoresis. Int J Pharm Adv 1: 320–328

    Google Scholar 

  • Tatton WG, Greenwood CE (1991) Rescue of dying neurones: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 30: 666–672

    Article  CAS  PubMed  Google Scholar 

  • Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) (—)-deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Tekes K, Tóthfalusi L, Gaál J, Magyar K (1988) Effect of MAO inhibitors on the uptake and metabolism of dopamine in rat and human brain. Pol J Pharmacol Pharm 40:653–658

    CAS  PubMed  Google Scholar 

  • Tipton KF (1980) Kinetics and enzyme inhibition studies. In: Sandler M (ed) Enzyme inhibitors and drugs. McMillen, London, pp 1–23

    Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1986) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  Google Scholar 

  • Yu PH, Davis BA, Fang J, Boulton AA (1994) Neuroprotective effects of some monoamine oxidase-B inhibitors against DSP-4 induced noradrenaline depletion in the mouse hippocampus. J Neurochem 63: 1820–1828

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Magyar, K., Szende, B., Lengyel, J., Tarczali, J., Szatmáry, I. (1998). The neuroprotective and neuronal rescue effects of (—)-deprenyl. In: Finberg, J.P.M., Youdim, M.B.H., Riederer, P., Tipton, K.F. (eds) MAO — The Mother of all Amine Oxidases. Journal of Neural Transmission. Supplement, vol 52. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6499-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6499-0_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83037-6

  • Online ISBN: 978-3-7091-6499-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics