Skip to main content

Cytochemistry of mature angiosperm pollen

  • Chapter
Pollen and Pollination

Abstract

The problems involved in applying histochemical and cytochemical methods to mature angiosperm pollen for bright light and fluorescence microscopy are discussed. These methods can be used for general examination or to reveal particular structures or groups of substances. The main methods of testing pollen viability and germinability based on stains and semiquantitative methods are also reviewed. The main methods of staining and their applications are summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M. P. (1969) Differential staining of aborted and nonaborted pollen. Stain Technol. 44: 117–122.

    PubMed  CAS  Google Scholar 

  • Alexander M. P. (1987) A method for staining pollen tubes in pistil. Stain Technol. 62: 107–112.

    PubMed  CAS  Google Scholar 

  • Ashford A. E., Knox R. B. (1980) Characteristics of pollen diffusates and pollen wall cytochemistry. Cell Sci. 44: 1–17.

    CAS  Google Scholar 

  • Baker H. G., Baker I. (1979) Starch in angiosperm pollen grains and its evolutionary significance. Amer. J. Bot. 66: 591–600.

    Google Scholar 

  • Baker J. R. (1947) Further remarks on the histochemical recognition of lipine. Quart. J. Microscop. Sci. 88: 463–465.

    CAS  Google Scholar 

  • Barrow J. R. (1983) Comparisons among pollen viability measurement methods in cotton. Crop Sci. 23: 734–736.

    Google Scholar 

  • Bassani M., Pacini E., Franchi G. G. (1994) Humidity stress responses in pollen of anemophilous and entomophilous species. Grana 33: 146–150.

    Google Scholar 

  • Beattie A. J. (1971) Pan Pac. Entomol. 47: 82 (cited by Dafni A. (1992) Pollination ecology. A practical approach. Oxford: IRL Press).

    Google Scholar 

  • Bellani L. M., Pacini E., Franchi G. G. (1985a) In vitro pollen grain germination and starch content in species with different reproductive cycle. I. Lycopersicum peruvianum Mill. Acta Bot. Neerl. 34: 59–64.

    Google Scholar 

  • Bellani L. M., Pacini E., Franchi G. G. (1985b) In vitro pollen grain germination and starch content in species with different reproductive cycle. II. Malus domestica Borkh. cultivars Starkrimson and Golden Delicious. Acta Bot. Neerl. 34: 65–71.

    Google Scholar 

  • Brewbaker J. L., Kwack B. H. (1964) The calcium ion and substances influencing pollen growth. In: Linskens H. F. (ed.) Pollen physiology and fertilization. North-Holland Publishing Company, Amsterdam, pp. 143–151.

    Google Scholar 

  • Cain A. J. (1947) The use of Nile blue in the examination of lipids. Quart. J. Microscop. Sci. 88: 463–465.

    Google Scholar 

  • Chichiriccò G., Grilli Caiola M. (1982) Germination and viability of the pollen of Crocus sativus L. Giorn. Bot. Ital. 116: 167–173.

    Google Scholar 

  • Coleman A. W., Goff L. J. (1985) Applications of fiuorochromes to pollen biology. I. Mithramicin and 4’,6-diamidini-2-phenylindole (DAPI) as vital staining and for quantitation of nuclear DNA. Stain Technol. 60: 145–154.

    CAS  Google Scholar 

  • Corriveau J. L., Coleman A. W. (1991) Monitoring by epifluorescence microscopy of organeile DNA fate during pollen development in five angiosperm species. Dev. Biol. 147: 271–280.

    PubMed  CAS  Google Scholar 

  • Cresti M., Pacini E., Ciampolini F., Sarfatti G. (1977) Germination and pollen tube development in vitro of Lycopersicum peruvianum pollen: ultrastructural features. Planta 136: 239–247.

    Google Scholar 

  • Currier H. B., Strugger S. (1956) Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L. Protoplasma 45: 552–559.

    Google Scholar 

  • Darlington C. D., La Cour L. F. (1960) The handling of chromosomes, 3rd rev. edn. George Allen and Unwin Ltd., London.

    Google Scholar 

  • Deitch A. (1955) Microspectrophotometric study of the binding of the anionic dye naphtol yellow S by tissue sections and purified proteins. Lab. Invest. 4: 324–351.

    PubMed  CAS  Google Scholar 

  • De Nettancourt D. (1977) Incompatibility in Angiosperms. Springer, Berlin.

    Google Scholar 

  • Dobson H. E. M. (1988) Survey of pollen and pollenkitt lipids—chemical cues to flower visitors. Amer. J. Bot. 75: 170–182.

    CAS  Google Scholar 

  • Edelman J., Jefford T. G. (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus luberosus. New Phytol. 67: 517–531

    CAS  Google Scholar 

  • Eeninck A. H. (1981) Compatibility and incompatibility in witloof-chicory (Cichorium intybus L.). 1. The influence of temperature and plant age on pollen germination and seed production. Euphytica 30: 71–76.

    Google Scholar 

  • Endress P. K. (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge.

    Google Scholar 

  • Erdtman G. (1952) Pollen Morphology and Plant Taxonomy. Angiosperms. Almqvist&Wiksell, Stockholm.

    Google Scholar 

  • Erdtman G. (1960) The acetolysis method. Sven. Bot. Tidskr. 54: 561–564.

    Google Scholar 

  • Evans N., Hoyne P. (1982) A fluorochrome from aniline blue: structure, synthesis and fluorescence properties. Aust. J. Chem. 35: 2571–2575.

    CAS  Google Scholar 

  • Faegri K., Iversen J. (1964) Textbook for pollen analysis. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fisher D. (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16: 92–96.

    PubMed  CAS  Google Scholar 

  • Flax M., Hirnes M. (1952) Microspectrophotometric analysis of metachromatic staining of nucleic acids. Physiol. Zool. 25: 297–311.

    Google Scholar 

  • Franchi G. G., Bellani L., Nepi M., Pacini E. (1996) Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191: 143–159.

    Google Scholar 

  • Franchi G. G., Franchi G., Corti P., Pompella A. (1997) Microspectrophotometric evaluation of digestibility of pollen grains. Pl. Foods Hum. Nutr. 50: 115–126.

    CAS  Google Scholar 

  • Franchi G. G., Franchi G., Giorni G. (1983) Influenza sul polline dell’inquinamento atmosferico da piombo. Boll. Chim. Farm. 122: 589–597.

    CAS  Google Scholar 

  • Franchi G. G., Pacini E. (1980) Wall projections in the vegetative cell of Parietaria officinalis L. pollen. Protoplasma 104: 67–74.

    Google Scholar 

  • Franchi G. G., Pacini E., Rottoli P. (1984) Pollen grain viability in Parietaria judaica L. during the long blooming period and correlation with meteorological conditions and allergic diseases. Giorn. Bot. Ital. 118: 163–178.

    Google Scholar 

  • Frankis R., Mascarenas J. P. (1980) Messenger RNA in the ungerminated pollen grain: a direct demonstration of its presence. Ann. Bot. 45: 595–599.

    CAS  Google Scholar 

  • Gabe M. (1976) Histological tecniques. Masson, Paris.

    Google Scholar 

  • Gahan P. B. (1984) Plant histochemistry and cytochemistry. Academic Press, London.

    Google Scholar 

  • Goff L. J. A., Coleman A. W. (1984) Elucidation of fertilization and development in a red alga by quantitative DNA microspectrofluorometry. Dev. Biol. 102: 1023–1024.

    Google Scholar 

  • Gurr E. (1965) The rationale use of dies in biology. Leonard Hill, London.

    Google Scholar 

  • Halterlein A. J., Clayberg C. D., Iwan D. T. (1980) Influence of high temperature on pollen grain viability and pollen tube growth in the styles of Phaseolus vulgaris L. J. Amer. Soc. Hort. Sci. 105: 12–14.

    Google Scholar 

  • Hauser E. J. P., Morrison J. H. (1964) Cytochemical reduction of nitro blue tetrazolium as an index of pollen viability. Amer. J. Bot. 51: 748–753.

    Google Scholar 

  • Hendry G. A. F. (1993) Evolutionary origins and natural functions of fructanes—a climatological, biogeographic and mechanistic appraisal. New Phytol. 123: 3–14.

    CAS  Google Scholar 

  • Heslop-Harrison J. (1968) Synchronous pollen mitosis and the formation of the generative cell in massulate orchids. J. Cell Sci. 3: 457–466.

    Google Scholar 

  • Heslop-Harrison J. (1975) The adaptive significance of the exine. In: Ferguson J. K., Muller J. (eds.) The evolutionary significance of the exine. Academic Press, London, pp. 27–38.

    Google Scholar 

  • Heslop-Harrison J. (1979a) Pollen walls as adaptive systems. Ann. Missouri Bot. Gard. 66: 813–829.

    Google Scholar 

  • Heslop-Harrison J. (1979b) Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann. Bot. 44 [Suppl. 1]: 1–47.

    Google Scholar 

  • Heslop-Harrison J. (1979c) An interpretation of the hydrodynamics of pollen. Amer. J. Bot. 66: 737–743.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45: 115–120.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1985) Germination of stress-tolerant Eucaliptus pollen. J. Cell Sci. 73: 135–157.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1991) Structural and functional variation in pollen intine. In: Blackmore S., Barnes S. H. (eds.) Pollen and spores. Patterns of diversification. Clarendon Press, Oxford, pp. 331–343.

    Google Scholar 

  • Heslop-Harrison J., Knox R. B., Heslop-Harrison Y. (1974) Pollen-wall proteins: exine held fractions associated with the incompatibility response in Cruciferae. Theor. Appl. Genet. 44: 133–137.

    Google Scholar 

  • Heslop-Harrison J., Knox R. B., Heslop-Harrison Y., Mattsson O. (1975) Pollen-wall proteins: emission and role in incompatibility responses. In: Duckett J. G., Racey P. A. (eds.) The biology of male gametes. Academic Press, London, pp. 189–202.

    Google Scholar 

  • Heslop-Harrison Y. (1977) The pollen stigma interaction: pollen tube penetration in Crocus. Ann. Bot. 41: 913–922.

    Google Scholar 

  • Heslop-Harrison Y., Heslop-Harrison J. (1982) The microfibrillar component of the pollen intine: some structural features. Ann. Bot. 50: 831–842.

    Google Scholar 

  • Heslop-Harrison Y., Heslop-Harrison J. S., Heslop-Harrison J. (1986) Germination of Corylus avellana L. (hazel) pollen: Hydration and the function of the oncus. Acta Bot. Neerl. 35: 265–284.

    Google Scholar 

  • Hoekstra F. A., Van Roekel T. (1988) Desiccation tolerance in Papaver dubium L. pollen during its development in the anther. Plant Physiol. 88: 626–632.

    PubMed  CAS  Google Scholar 

  • Hough T., Bernhardt P., Knox R. B., Williams E. G. (1985) Applications of fluorochromes to pollen biology. II. The DNA probes Ethidium Bromide and Hoechst 33258. Stain Technol. 60: 155–162.

    PubMed  CAS  Google Scholar 

  • Jensen W. A. (1962) Botanical histochemistry: principles and practice. WH Freeman and Co, San Francisco.

    Google Scholar 

  • Johansen D. A. (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Jones A. G. (1976) Environmental effects on the percentage of stainable and presumed normal pollen in Aster (Compositae). Amer. J. Bot. 63: 657–663.

    Google Scholar 

  • Kandier O., Hopf H. (1980) Occurrence, metabolism, and function of Oligosaccharides. In: Preiss J. (ed.) The biochemistry of plants: a comprehensive treatise. Vol. 3. Carbohydrates: structure and function. Academic Press, New York, pp. 221–270.

    Google Scholar 

  • Keijzer C. J. (1987) The process of anther dehiscence and pollen dispersal. II. The formation and the transfer mechanism of pollenkitt, cell wall development of the loculus tissues and the function of orbicules in pollen dispersal. New Phytol. 105: 499–507.

    Google Scholar 

  • Knox R. B. (1979) Pollen and allergy. Edward Arnold Limited, London.

    Google Scholar 

  • Kress W. J. (1986) Exineless pollen structure and pollination systems of tropical Heliconia (Heliconiaceae). In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores. Form and function. Academic Press, London, pp. 329–345.

    Google Scholar 

  • Laloue M., Courtois D., Manigault P. (1980) Convenient and rapid fluorescent staining of cell nuclei with 33258 Hoechst. Plant Sci. Lett. 17: 175–179.

    CAS  Google Scholar 

  • Laser K. D., Lersten N. R. (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile Angiosperms. Bot. Rev. 38: 425–454.

    Google Scholar 

  • Le Pecq J. B., Paoletti C. (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol. 27: 87–106.

    CAS  Google Scholar 

  • Linskens H. F., Mulleneers J. M. L. (1967) Formation of “instant pollen tubes”. Acta Bot. Neerl. 16: 132–142.

    Google Scholar 

  • Lisci M., Tanda C., Pacini E. (1994) Pollination ecophysiology of Mercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. Ann. Bot. 74: 125–135.

    Google Scholar 

  • Major H. D., Hampton J. C., Rosario B. (1961) A simple method for removing the resin from epoxy-embedded tissue. J. Cell Biol. 9: 909–910.

    Google Scholar 

  • Martin F. W. (1959) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 34: 125–128.

    PubMed  CAS  Google Scholar 

  • Matthys-Rochon E., Vergne P., Detchpare S., Dumas C. (1987) Male Germ Unit isolation from three tricellular pollen species: Brassica oleracea, Zea mays, and Triticum aestivum. Plant Physiol. 83: 464–466.

    PubMed  CAS  Google Scholar 

  • Mazia D., Brewer P., Alfert M. (1953) The cyto-chemical staining and measurament of protein with mercuric bromophenol blue. Biol. Bull. 104: 527–540.

    Google Scholar 

  • Meuter-Gerhards A., Schwerdtfeger C., Steuernagel S., Wilmesmeier S., Wiermann R. (1995) Studies on sporopollenin structure during pollen development. Z. Naturforsch. 50c: 487–492.

    Google Scholar 

  • Miyamura S., Kuroiwa T., Nagata T. (1987) Disappearance of plastids and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy. Protoplasma 141: 149–159.

    Google Scholar 

  • Mulcahy D. L. (1981) Pollen tetrads in the detection of environmental mutagenesis. Environ. Health Perspect. 37: 91–94.

    PubMed  CAS  Google Scholar 

  • Nepi M., Ciampolini F., Pacini E. (1995) Development of Cucurbita pepo pollen. Ultrastructure and histochemistry of the sporoderm. Can. J. Bot. 73: 1046–1057.

    Google Scholar 

  • Nepi M., Pacini E. (1993) Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Ann. Bot. 72: 527–536.

    Google Scholar 

  • Nepi M., Pacini E. (1999) What may be the significance of polysiphony in Lavatera arboreal In: Clément C., Pacini E., Audran J. C. (eds.) Anther and pollen: from biology to biotechnology. Springer, Berlin, pp. 13–20.

    Google Scholar 

  • Nilsson S., Praglowski J. (1992) Erdtman’s handbook of palinology. Munksgaard, Copenaghen.

    Google Scholar 

  • O’Brien T. P., Feder N., McCully M. E. (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59: 368–373.

    CAS  Google Scholar 

  • O’Brien T. P., McCully M. E. (1981) The study of plant structure—principles and selected methods. Termarcarphi Pty, Melbourne.

    Google Scholar 

  • Ockendon D. J., Gates P. J. (1976) Reduced pollen viability in the onion (Allium cepa). New Phytol. 76: 511–517.

    Google Scholar 

  • Pacini E. (1990) Harmomegathic character of Pteridophyta spores and Spermatophyta pollen. Plant Syst. Evol. [Suppl.] 5: 53–69.

    Google Scholar 

  • Pacini E. (1997) Tapetum charcter states: analytical keys for tapetum types and activities. Can. J. Bot. 75: 1448–1459.

    Google Scholar 

  • Pacini E., Cresti M., Ciampolini F., Bini G. (1978) Vitalità, presenza di amido, anomalie morfologiche nel polline di 48 cultivar di olivo. In: Sansavini S. (ed.) La fertilità nelle piante da frutto. Società Orticola Italiana, Bologna, pp. 643–654.

    Google Scholar 

  • Pacini E., Franchi G. G. (1987) II polline: biologia ed applicazioni. Piccin, Padova.

    Google Scholar 

  • Pacini E., Franchi G. G. (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst. Evol. [Suppl.] 7: 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G. (1998) Pollen dispersal units, gynoecium and pollination. In: Owens S. J., Rudall P. J. (eds.) Reproductive biology. Royal Botanic Garden, Kew, pp. 183–195.

    Google Scholar 

  • Pacini E., Franchi G. G. (1999) Types of pollen dispersal units and pollen competition. In: Clément C., Pacini E., Audran J.-C. (eds.) Anther and pollen: from Biology to Biotecnology. Springer, Berlin, pp. 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G., Bellani L. M. (1985a) Pollen grain development in the olive (Olea europaea L.): ultrastructure and anomalies. In: Willemse M. T. M., Van Went J. L. (eds.) Sexual reproduction in seed plants, ferns and mosses. Pudoc, Wageningen, pp. 25–27.

    Google Scholar 

  • Pacini E., Franchi G. G., Hesse M. (1985b) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst. Evol. 75: 183–196.

    Google Scholar 

  • Pacini E., Franchi G. G., Ripaccioli M. (1999) Ripe pollen structure and histochemistry of some gymnosperms. Plant Syst. Evol. 217: 81–99.

    Google Scholar 

  • Pacini E., Franchi G. G., Sarfatti G. (1981) On the widespread occurrence of poral sporophytic proteins in pollen of dicotyledons. Ann. Bot. 47: 405–408.

    CAS  Google Scholar 

  • Pacini E., Juniper B. E. (1979) The ultrastructure of pollen grain development in the olive (Olea europea). 1. Proteins in the pore. New Phytol. 83: 157–163.

    Google Scholar 

  • Pacini E., Viegi L. (1995) Total Polysaccharide content of developing pollen in two angiosperm species. Grana 34: 237–241.

    Google Scholar 

  • Pálfi G., Mihalik E. (1985) Proline staining as a new method for determining the vitality of pollen grains in wind and insect pollinated plants. Acta Bot. Hung. 31: 315–321.

    Google Scholar 

  • Pardi M. L., Viegi L., Cela Renzoni G., Franchi G. G., Pacini E. (1996) Effects of acidity on the insoluble Polysaccharide content of germinating pollen of Pinus pinea L. and Pinus pinaster Aiton. Grana 35: 240–247.

    Google Scholar 

  • Pearse A. G. E. (1985) Histochemistry, theoretical and applied, vol. 2: analytical technology. 4th edn. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Punt W., Blackmore S., Nilsson S., Le Thomas A. (1994) Glossary of pollen and spore terminology. LPP Foundation, Utrecht.

    Google Scholar 

  • Rawlins T. E., Takashi W. N. (1952) Techniques of plant histochemistry and virology. National Press, Millbrae.

    Google Scholar 

  • Reeve R. M. (1959) A specific hydroxilamine-ferric chloride reaction for histochemical localization of pectin. Stain Technol. 34: 209–211.

    PubMed  CAS  Google Scholar 

  • Regan S., Moffatt B. (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 2: 877–889.

    PubMed  CAS  Google Scholar 

  • Russel S. D. (1986) Isolation of sperm cells from the pollen of Plumbago zeilanica. Plant Physiol. 81: 317–319.

    Google Scholar 

  • Russel S. D., Cresti M., Dumas C. (1990) Recent progress on sperm characterization in flowering plants. Physiol. Plant 80: 669–676.

    Google Scholar 

  • Shivanna K. R., Heslop-Harrison J. (1981) Membrane state and pollen viability. Ann. Bot. 47: 759–770.

    Google Scholar 

  • Skvarla J. J., Larson D. A. (1966) Fine-structural studies of Zea mays pollen. I. Cell membranes and exine ontogeny. Amer. J. Bot. 53: 1112–1125.

    Google Scholar 

  • Southworth D. (1973) Cytochemical reactivity of pollen walls. J. Histochem. Cytochem. 21: 73–80.

    PubMed  CAS  Google Scholar 

  • Southworth D. (1974) Solubility of pollen exine. Amer. J. Bot. 61: 36–44.

    Google Scholar 

  • Southworth D. (1990) Exine biochemistry. In: Blackmore S., Knox R. B. (eds.) Microspores, evolution and ontogeny. Academic Press, London, pp. 193–213.

    Google Scholar 

  • Speranza A., Calzoni G. L., Pacini E. (1997) Occurrence of mono-or disaccharides and polysaccharides reserves in mature pollen grains. Sex. Pl. Reprod. 10: 110–115.

    CAS  Google Scholar 

  • Spollen W. G., Nelson C. J. (1994) Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiol. 106: 329–336.

    PubMed  CAS  Google Scholar 

  • Stanley R. G., Linskens H. F. (1974) Pollen: biology, biochemistry and management. Springer, Berlin.

    Google Scholar 

  • Tanaka I. (1988) Isolation of generative cells and their protoplasts from pollen of Lilium longiflorum. Protoplasma 142: 68–73.

    Google Scholar 

  • Tanaka I. (1993) Development of male gametes in flowering plants. J. Pl. Res. 106: 55–63.

    Google Scholar 

  • Tanaka I., Kitazume C., Ito M. (1987) The isolation and culture of lily pollen protoplast. Plant Science 106: 55–63.

    Google Scholar 

  • Thanikaimoni G. (1986) Pollen apertures: form and function. In: Blackmore S., Ferguson I. K. (eds.) Pollen and spores. Form and function. Academic Press, London, pp. 119–136.

    Google Scholar 

  • Vergne P., Delvallee I., Dumas C. (1987) Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Technol. 62: 299–304.

    PubMed  CAS  Google Scholar 

  • Werner D. J., Chang S. (1981) Stain testing viability in stored peach pollen. HortScience 16: 522–523.

    Google Scholar 

  • Wiermann R., Gubatz S. (1992) Pollen wall and sporopollenin. Int. Rev. Cytol. 140: 35–72.

    CAS  Google Scholar 

  • Williams E. G., Clarke A. E., Knox R. B. (eds.) (1994) Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Wodehouse R. P. (1935). Pollen grains. McGraw-Hill Book Company, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this chapter

Cite this chapter

Nepi, M., Franchi, G.G. (2000). Cytochemistry of mature angiosperm pollen. In: Dafni, A., Hesse, M., Pacini, E. (eds) Pollen and Pollination. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6306-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6306-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7248-3

  • Online ISBN: 978-3-7091-6306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics