Skip to main content

Abstract

According to palaeontological evidence, the Chaetognatha (arrow worms), a group of small marine predators that are major components of the zooplankton throughout our world oceans, were present already in the Early Cambrian (approx. 540–520 Myr years ago), namely, as Chengjiang biota, but have also been documented in the Middle Cambrian Burgess Shale. The so-called protoconodonts, spine-like, small, shelly microfossil elements that were abundant in the Cambrian, are today convincingly interpreted as parts of the chaetognath grasping apparatus or, at least, as belonging to protoconodont animals most closely related to Chaetognatha (e.g., Szaniawski 1982, 2002, 2005; Vannier et al. 2007; but see Conway Morris 2009; Szaniawski 2009 for a controversial discussion). The presence of protoconodonts in the lowermost Cambrian and the complexity of their feeding apparatus points to a Precambrian origin of these animals. These authors also suggested placing them among the earliest active predator metazoans and argued that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Today, the taxon Chaetognatha comprises more than 150 described species from all geographical and vertical ranges of the ocean. They are characterised by an elongated, streamlined body; the presence of horizontally projecting fins; and, at the anterior end, two groups of moveable, cuticularised grasping spines used in capturing prey such as copepods (Fig. 10.1). With a body length between just a few millimetres up to 120 mm, these glassily transparent carnivores are among the most abundant planktonic organisms, but several epibenthic species are also known.

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarino A (1992) Chaetognatha. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Oxford & IBH Publishing Co. PVT. LTD., New Delhi, pp 425–470, Chapter 22

    Google Scholar 

  • Arendt D, Nübler-Jung K (1997) Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech Dev 61:7–21

    Article  CAS  PubMed  Google Scholar 

  • Ax P (2001) Das System der Metazoa III. Spektrum Akademischer Verlag, Hamburg

    Google Scholar 

  • Backeljau T, Winnepenninckx B, De Bruyn L (1993) Cladistic analysis of metazoan relationships: a reappraisal. Cladistics 9:167–181

    Google Scholar 

  • Bieri R (1991) Systematics of the Chaetognatha. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 122–136

    Google Scholar 

  • Bone Q, Goto T (1991) The nervous system. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 18–31

    Google Scholar 

  • Bone Q, Pulsford A (1984) The sense organs and ventral ganglion of Sagitta (Chaetognatha). Acta Zool (Stockh) 65:209–220

    Article  Google Scholar 

  • Bone Q, Kapp H, Pierrot-Bults AC (1991) The biology of Chaetognaths. Oxford University Press, New York, pp 1–173

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) The invertebrates, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Burfield ST (1927) Sagitta. Liverpool Mar Biol Com Mem 28:1–104

    Google Scholar 

  • Carré D, Djediat C, Sardet C (2002) Formation of a large vasa-positive germ granule and its inheritance by germ cells in the enigmatic chaetognaths. Development 129:661–670

    PubMed  Google Scholar 

  • Conway MS (2009) The Burgess Shale animal Oesia is not a chaetognath: a reply to Szaniawski. Acta Palaeontol Pol 54:175–179

    Article  Google Scholar 

  • Darwin C (1844) Observations on the structure and propagation of the genus Sagitta. Ann Mag Nat Hist Lond 13:1–6

    Google Scholar 

  • Doncaster L (1903) On the development of Sagitta, with notes on the anatomy of adult. Q J Microsc Sci 46:351–398

    Google Scholar 

  • Duvert M, Salat C (1979) Fine structure of muscle and other components of the trunk of Sagitta setosa (Chaetognatha). Tissue Cell 11:217–230

    Article  CAS  PubMed  Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Article  Google Scholar 

  • Elpatiewsky VW (1909) Die Urgeschlechtszellenbildung bei Sagitta. Anat Anz 35:226–239

    Google Scholar 

  • Feigenbaum DL (1976) Development of the adhesive organ in Spadella schizoptera (Chaetognatha) with comments on growth and pigmentation. Bull Mar Sci 26:600–603

    Google Scholar 

  • Ghiradelli E (1995) Chaetognaths: two unsolved problems: the coelom and their affinities. In: Lanzavecchia G, Valvassori R, Candia Carnevali MD (eds) Body cavities: function and phylogeny. Selected Symposia and Monographs, vol 8. UZI, Modena, Italy, pp 167–185

    Google Scholar 

  • Ghirardelli E (1953) L’accopiamento in Spadella cephaloptera Busch. Pubbl Staz Zool Napoli XXIV, Fasc 3o: 3–12

    Google Scholar 

  • Ghirardelli E (1968) Some aspects of the biology of the chaetognaths. Adv Arch Biol 6:271–357

    Article  Google Scholar 

  • Goto T (1999) Fertilization process in the arrow worm Spadella cephaloptera (Chaetognatha). Zool Sci 16:109–114

    Article  Google Scholar 

  • Goto T, Yoshida M (1984) Photoreception in Chaetognatha. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Publishing Corporation, New York, pp 727–742

    Chapter  Google Scholar 

  • Goto T, Yoshida M (1985) The mating sequence of the benthic arrowworm Spadella schizoptera. Biol Bull 169:328–333

    Article  Google Scholar 

  • Goto T, Yoshida M (1987) Nervous system in Chaetognatha. In: Ali MA (ed) Nervous systems in invertebrates. Plenum Publishing Corporation, New York, pp 461–481

    Chapter  Google Scholar 

  • Goto T, Yoshida M (1997) Growth and reproduction of the benthic arrowworm Paraspadella gotoi (Chaetognatha) in laboratory culture. Invert Repro Dev 32:210–207

    Article  Google Scholar 

  • Goto T, Katayama-Kumoi Y, Tohyama M, Yoshida M (1992) Distribution and development of the serotonin-and RFamide-like immunoreactive neurons in the arrowworm, Paraspadella gotoi (Chaetognatha). Cell Tissue Res 267:215–222

    Article  CAS  Google Scholar 

  • Harzsch S, Müller CHG (2007) A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Front Zool 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Harzsch S, Wanninger A (2009) Evolution of invertebrate nervous systems: the Chaetognatha as a case study. Acta Zool (Stockh) 91:35–41

    Article  Google Scholar 

  • Harzsch S, Müller CHG, Rieger V, Perez Y, Sintoni S, Sardet C, Hansson B (2009) Fine structure of the ventral nerve centre and interspecific identification of individual neurons in the enigmatic Chaetognatha. Zoomorphology 128:53–73

    Article  Google Scholar 

  • Hejnol A, Martindale MQ (2009) The mouth, the anus and the blastopore – open questions about questionable openings. In: Telford MJ, Littlewood DTJ (eds) Animal evolution: genes, genomes, fossils and trees. Oxford University Press, Oxford, pp 33–40

    Chapter  Google Scholar 

  • Hertwig O (1880) Die Chaetognathen. Monatl Jenaer Z Med Nat 14:196–311

    Google Scholar 

  • Hyman LH (1959) Phylum Chaetognatha. Smaller coelomate groups. The invertebrates, vol 5. McGraw Hill Book Company, New York, pp 1–71

    Google Scholar 

  • Jenner RA (2004) Towards a phylogeny of the Metazoa: evaluating alternative phylogenetic positions of Platyhelminthes, Nemertea, and Gnathostomulida, with a critical reappraisal of cladistic characters. Contr Zool 73:3–163

    Google Scholar 

  • John CC (1933) Habits, structure and development of Spadella cephaloptera. Q J Microsc Sci 75:625–696

    Google Scholar 

  • Kapp H (1991) Morphology and anatomy. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 5–17

    Google Scholar 

  • Kapp H (2000) The unique embryology of Chaetognatha. Zool Anz 239:263–266

    Google Scholar 

  • Kapp H (2007) Chaetognatha, Pfeilwürmer. In: Westheide W, Rieger R (eds) Spezielle Zoologie. Teil 1. Einzeller und Wirbellose Tiere. Gustav Fischer Verlag, Stuttgart, pp 898–904

    Google Scholar 

  • Koch M, Quast B, Bartolomaeus T (2014) Coeloms and nephridia in annelids and arthropods. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. New insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter, Berlin, pp 173–284

    Google Scholar 

  • Kotori M (1975) Morphology of Sagitta elegans (Chaetognatha) in Early Larval Stages. J Oceanographical Society of Japan 31:139–144

    Google Scholar 

  • Kuhl W (1938) Chaetognatha. In: Bronn HG (ed) Klassen und Ordnungen des Tierreiches, vol IV. Akademische Verlagsgesellschaft, Leipzig, Abt. IV, Buch 2, Teil 1

    Google Scholar 

  • Kuhl W, Kuhl G (1965) Die Dynamik der Frühentwicklung von Sagitta setosa. Helgol Mar Res 12:260–301

    Google Scholar 

  • Lacalli TC (2010) The emergence of the chordate body plan: some puzzles and problems. Acta Zool (Stockh) 9:4–10

    Article  Google Scholar 

  • Martindale MQ, Heijnol A (2009) A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17:162–174

    Article  CAS  PubMed  Google Scholar 

  • Martín-Duran JM, Janssen R, Wennberg S, Budd GE, Hejnol A (2012) Deuterostomic development in the protostome Priapulus caudatus. Curr Biol 22:2161–2166

    Article  PubMed  Google Scholar 

  • Matus DQ, Halanych KM, Martindale MQ (2007) The Hox gene complement of a pelagic chaetognath, Flaccisagitta enflata. Int Comput Biol 47:854–864

    Article  CAS  Google Scholar 

  • Meglitsch PA, Schram FR (1991) Invertebrate Zoology. Oxford University Press, Oxford

    Google Scholar 

  • Müller CHG, Rieger V, Perez Y, Harzsch S (2014) Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). Zoomorphology 133:167–189

    Article  Google Scholar 

  • Nielsen C, Scharff N, Eibye-Jacobsen D (1996) Cladistic analyses of the animal kingdom. Biol J Linn Soc 57:385–410

    Google Scholar 

  • Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (2005a) Larval and adult brains. Evol Dev 7:483–489

    Article  PubMed  Google Scholar 

  • Nielsen C (2005b) Trochophora larvae: cell-lineages, ciliary bands and body regions. 2. Other groups and general discussion. J Exp Zool 304B:401–447

    Article  Google Scholar 

  • Nielsen C (2010) Some aspects of spiralian development. Acta Zool (Stockh) 91:20–28

    Article  Google Scholar 

  • Nielsen C (2012) Animal evolution: interrelationships of the living phyla, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Papillon D, Perez Y, Fasano L, Le Parco Y, Caubit X (2003) Hox gene survey in the chaetognath Spadella cephaloptera: evolutionary implications. Dev Genet Evol 213:142–148

    CAS  Google Scholar 

  • Papillon D, Perez Y, Caubit X, Le Parco Y (2004) Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol Biol Evol 21:2122–2129

    Article  CAS  PubMed  Google Scholar 

  • Papillon D, Perez Y, Fasano L, Parco YL, Caubit X (2005) Restricted expression of a median Hox gene in the central nervous system of chaetognaths. Dev Genet Evol 215:369–373

    Article  CAS  Google Scholar 

  • Pearre S (1991) Growth and reproduction. In: Bone Q, Kapp H, Pierrot-Bults AC (eds) The biology of Chaetognaths. Oxford University Press, New York, pp 61–75

    Google Scholar 

  • Perez Y, Rieger V, Martin E, Müller C, Harzsch S (2013) Neurogenesis in an early protostome relative: progenitor cells in the ventral nerve centre of chaetognath hatchlings are arranged in a highly organized geometrical pattern. J Exp Zool 320:179–193

    Article  Google Scholar 

  • Perez Y, Müller CHG, Harzsch S (2014) The Chaetognatha: an anarchistic taxon between Protostomia and Deuterostomia. In: Wägele JW, Bartolomaeus T (eds) Deep metazoan phylogeny: the backbone of the tree of life. Walter De Gruyter GmbH, Berlin, pp 49–74

    Google Scholar 

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18s rDNA gene sequences. Evol Dev 3:170–205

    Google Scholar 

  • Reeve MR (1970) Complete cycle of development of a pelagic chaetognath in culture. Nature 227:381

    Article  CAS  PubMed  Google Scholar 

  • Reeve MR, Lester B (1974) The process of egg-laying in the chaetognath Sagitta hispida. Biol Bull 147:247–256

    Article  Google Scholar 

  • Reeve MR, Walter MA (1972) Conditions of culture, food-size selection and the effects of temperature and salinity on growth rate and generation time in Sagitta hispida Conant. J Exp Mar Biol Ecol 9:191–200

    Article  Google Scholar 

  • Rieger V, Perez Y, Müller CHG, Lipke E, Sombke A, Hansson BS, Harzsch S (2010) Immunohistochemical analysis and 3D reconstruction of the cephalic nervous system in Chaetognatha: insights into an early bilaterian brain? Invertebr Biol 129:77–104

    Article  Google Scholar 

  • Rieger V, Perez Y, Müller CHG, Lacalli T, Hansson BS, Harzsch S (2011) Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Dev Growth Differ 53:740–759

    Article  PubMed  Google Scholar 

  • Schram FR, Ellis WN (1994) Metazoan relationships: a rebuttal. Cladistics 10:331–337

    Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Shimotori T, Goto T (1999) Establishment of axial properties in the arrow worm embryo, Paraspadella gotoi (Chaetognatha): developmental fate of the first two blastomeres. Zool Sci 16:459–469

    Article  Google Scholar 

  • Shimotori T, Goto T (2001) Developmental fates of the first four blastomeres of the chaetognath Paraspadella gotoi: relationship to protostomes. Dev Growth Differ 43:371–382

    Google Scholar 

  • Shinn GL (1994a) Ultrastructural evidence that somatic “accessory cells” participate in chaetognath fertilization. In: Wilson WH, SA Stricker, Shinn GL (eds) Reproduction and development of marine invertebrates. Johns Hopkins Univ Press, London, pp 96–105

    Google Scholar 

  • Shinn GL (1994b) Epithelial origin of mesodermal structures in arrowworms (Phylum Chaetognatha) Amer Zool 34:523–532

    Google Scholar 

  • Shinn GL (1997) Chaetognatha. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 15, Hemichordata, Chaetognatha, and the invertebrate chordates. Wiley-Liss, New York, pp 103–220

    Google Scholar 

  • Shinn GL, Roberts ME (1994) Ultrastructure of hatchling chaetognaths (Ferosagitta hispida): epithelial arrangement of mesoderm and its phylogenetic implications. J Morphol 219:143–163

    Article  Google Scholar 

  • Szaniawski H (1982) Chaetognath grasping spines recognized among Cambrian protoconodonts. Journal Paleontol 56:806–810

    Google Scholar 

  • Szaniawski H (2002) New evidence for the protoconodont origin of chaetognaths. Acta Palaeontol Pol 47:405–419

    Google Scholar 

  • Szaniawski H (2005) Cambrian chaetognaths recognized in Burgess Shale fossils. Acta Palaeontol Pol 50:1–8

    Google Scholar 

  • Szaniawski H (2009) Fossil chaetognaths from the Burgess Shale: a reply to Conway Morris. Acta Palaeontol Pol 54:361–364

    Article  Google Scholar 

  • Takada N, Goto T, Satoh N (2002) Expression pattern of the brachyury gene in the arrow worm Paraspadella gotoi (Chaetognatha). Genesis 32:240–245

    Article  CAS  PubMed  Google Scholar 

  • Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23:788–794

    Article  CAS  PubMed  Google Scholar 

  • Terazaki M, Miller CB (1982) Reproduction of meso and bathypelagic chaetognaths in the genus Eukrohnia. Mar Biol 71:193–196

    Article  Google Scholar 

  • Turbeville JM (1986) An ultrastructural analysis of coelomogenesis in the hoplonemertine prosorhochmus americanus and the Polychaete Magelona sp. J Morphol 187:51–60

    Google Scholar 

  • Valentine JW (1997) Cleavage patterns and the topology of the metazoan tree of life. Proc Natl Acad Sci USA 94:8001–8005

    Google Scholar 

  • Vannier J, Steiner M, Renvoise E, Hu S-X, Casanova J-P (2007) Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proc R Soc Lond B 274:627–633

    Article  CAS  Google Scholar 

  • Welsch U, Storch V (1982) Fine structure of the coelomic epithelium of Sagitta elegans. Zoomorphology 100:217–222

    Article  Google Scholar 

  • Willmer P (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press, New York

    Google Scholar 

  • Yasuda E, Goto T, Makabe KW, Satoh N (1997) Expression of actin genes in the arrow worm Paraspadella gotoi (Chaetognatha). Zool Sci 14:953–960

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Verena Rieger for her contribution to the experimental work on nervous system development reported here and Tina Kirchhoff for editing the reference list. We gratefully acknowledge the exchange with Thurston Lacalli and Andreas Hejnol on metazoan gastrulation patterns, Carolin and Joachim Haug on fossil chaetognaths, and Günter Purschke on photoreceptor structure. Research on arrow worms by SH was supported by grants HA 2540/7-1, 2, 3 in the DFG focus programme “Metazoan Deep Phylogeny”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Harzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Harzsch, S., Müller, C.H.G., Perez, Y. (2015). Chaetognatha. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1862-7_10

Download citation

Publish with us

Policies and ethics