Skip to main content

Abstract

The skin is the largest organ in the body making up 16 % of body weight, with a surface area of 1.8 m2. Because it interfaces with the environment, skin primarily serves as a protective barrier allowing and limiting the inward and outward passage of water, electrolytes and various substances while providing protection against microorganisms, ultraviolet radiation, toxic agents and mechanical insults. An injury of large portions of skin, as in severely burned patients, may result in significant disability or even death. Limitations in the use of autografts and local and free flaps in patients with skin and soft tissue loss have lead to the development of tissue-engineered skin. The term tissue engineering came up in 1987 as a result of combining knowledge from the field of engineering and biology to create bioartificial tissue for regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso L, Fuchs E (2003) Stem cells in the skin: waste not, Wnt not. Genes Dev 17:1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Bevan D, Gherardi E, Fan TP, Edwards D, Warn R (2004) Diverse and potent activities ofHGF/SF in skin wound repair. J Pathol 203:831–838

    Article  PubMed  CAS  Google Scholar 

  • Billings E Jr, May JW Jr (1989) Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg 83(2):368–381

    Article  PubMed  Google Scholar 

  • Boyce ST, Supp AP, Wickett RR, Hoath SB, Warden GD (2000) Assessment with the dermal torque meter of skin pliability after treatment of burns with cultured skin substitutes. J Burn Care Rehabil 21:55–63

    Article  PubMed  CAS  Google Scholar 

  • Brayfield C, Marra K, Rubin JP (2010) Adipose stem cells for soft tissue regeneration. Handchir Mikrochir Plast Chir 42(2):124–128

    Article  PubMed  CAS  Google Scholar 

  • Butler CE, Orgill DP (2005) Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane. Adv Biochem Eng Biotechnol 94:23–41

    PubMed  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332(2):370–379

    Article  PubMed  CAS  Google Scholar 

  • Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265(14):7709–7712

    PubMed  CAS  Google Scholar 

  • Chang HY, Chi JT, Dudoit S et al (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99:12877–12882

    Article  PubMed  CAS  Google Scholar 

  • Chester DL, Balderson DS, Papini RP (2004) A review of keratinocyte delivery to the wound bed. J Burn Care Rehabil 25:266–275

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Park SN, Suh H (2005) Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 26(29):5855–5863

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Elliott GA (1963) The stimulation of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse. J Invest Dermatol 40:1–5

    PubMed  CAS  Google Scholar 

  • Coleman SR, Saboeiro A (2007) Fat grafting to the breast revisited: safety and efficacy. Ann Plast Surg 119(3):775–785

    CAS  Google Scholar 

  • Croissandeau G, Chretien M, Mbikay M (2002) Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes. Biochem J 364(Part 3):739–746

    Article  PubMed  CAS  Google Scholar 

  • Currie LJ, Sharpe JR, Martin R (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 108:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • De Bari C, Dell Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50:142–150

    Article  PubMed  Google Scholar 

  • De Ugarte DA, Ashjian PH, Elbarbary A, Hedrick MH (2003) Future of fat as raw material for tissue regeneration. Ann Plast Surg 50(2):215–219

    Article  PubMed  Google Scholar 

  • Ehrenreich M, Ruszczak Z (2006) Update on tissue-engineered biological dressings. Tissue Eng 12:2407–2424

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MW, O’Kane S (2004) Scar-free healing: from embryonic mechanisms to adult ­therapeutic intervention. Philos Trans R Soc B 359:839–850

    Article  CAS  Google Scholar 

  • Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S (1995) Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 270:12607–12613

    Article  PubMed  CAS  Google Scholar 

  • Fraser JK, Wulur I, Alfonso Z et al (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154

    Article  PubMed  CAS  Google Scholar 

  • Gallico GG III, O’Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311:448–451

    Article  PubMed  Google Scholar 

  • Giorgino F, Laviola L, Eriksson JW (2005) Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 183(1):13–30

    Article  PubMed  CAS  Google Scholar 

  • Goessler UR, Hörmann K, Riedel F (2005) Adult stem cells in plastic reconstructive surgery. Int J Mol Med 15:899–905

    PubMed  CAS  Google Scholar 

  • Griffith LG, Schwartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  • Hemmrich K, Meersch M, Wiesemann U, Salber J, Klee D, Gries T, Pallua N (2006) ­Polyesteramide-derived nonwovens as innovative degradable matrices support preadipocyte adhesion, proliferation, and differentiation. Tissue Eng 12(12):3557–3565

    Article  PubMed  CAS  Google Scholar 

  • Hojo M, Inokuchi S, Kidokoro M, Fukuyama N, Tanaka E, Tsuji C, Miyasaka M, Tanino R, Nakazawa H (2003) Induction of vascular endothelial growth factor by fibrin as a dermal ­substrate for cultured skin substitute. Plast Reconstr Surg 111:1638–1645

    Article  PubMed  Google Scholar 

  • Huang S, Xu Y, Wu C, Sha D, Fu X (2010) In vitro constitution and in vivo implantation of ­engineered skin constructs with sweat glands. Biomaterials 31:5520–5525

    Article  PubMed  CAS  Google Scholar 

  • Hudo V, Berthod F, Black AF, Damour O, Germain L, Auger FA (2003) A tissue engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol 148:1094–1104

    Article  Google Scholar 

  • Jin G, Prabhakaran MP, Ramakrishna S (2011) Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater 7(8):3113–3122

    Article  PubMed  CAS  Google Scholar 

  • Kamolz LP, Luegmair M, Wick N, Eisenbock B, Burjak S, Koller R, Meissl G, Frey M (2005) The Viennese culture method: cultured human epithelium obtained on a dermal matrix based on fibroblast containing fibrin glue gels. Burns 31(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Katz AJ, Llull R, Hedrick MH, Futrell JW (1999) Emerging approaches to the tissue engineering of fat. Clin Plast Surg 26(4):587–603

    PubMed  CAS  Google Scholar 

  • Keck M, Haluza D, Burjak S, Eisenbpck B, Kamolz L-P, Frey M (2009) Cultivation of keratinocytes and preadipocytes on a collagen-elastin scaffold (Matriderm®): first results of an in vitro study. Eur Surg 41/4:189–193

    Article  Google Scholar 

  • Keck M, Haluza D, Selig HF, Jahl M, Lumenta DB, Kamolz L-P, Frey M (2011) Adipose tissue engineering: three different approaches to seed preadipocytes on a collagen-elastin matrix. Ann Plast Surg 67(5):484–488

    Article  PubMed  CAS  Google Scholar 

  • Kivinen PK, Hyttinen M, Harvima RJ, Naukkarinen A, Horsmanheimo M, Harvima IT (1999) Quantitative digital image analysis applied to demonstrate the stratified distribution of involucrin in organ cultured human skin. Arch Dermatol Res 291:217–223

    Article  PubMed  CAS  Google Scholar 

  • Koller R, Bierochs B, Meissl G, Rab M, Frey M (2002) The use of allogeneic cultivated keratinocytes for the early coverage of deep dermal burns – indications, results and problems. Cell Tissue Bank 3:11–14

    Article  PubMed  Google Scholar 

  • Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A, Torio-Padron N, Schramm R, Rücker M, Junker D, Häufel JM, Carvalho C, Heberer M, Germann G, Vollmar B, Menger MD (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12:2093–2104

    Article  PubMed  CAS  Google Scholar 

  • Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release 89:341–353

    Article  PubMed  CAS  Google Scholar 

  • Mandrup S, Lane MD (1997) Regulating adipogenesis. J Biol Chem 272(9):5367–5370

    Article  PubMed  CAS  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4:413–437

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    Article  PubMed  CAS  Google Scholar 

  • Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri MC, Rao MS, Tanavde V (2008) PDGF, TGF-β, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood 112(2):295–307

    Article  PubMed  CAS  Google Scholar 

  • Notara M, Bullett NA, Deshpande P, Haddow DB, MacNeil S, Daniels JT (2007) Plasma polymer coated surfaces for serum-free culture of limbal epithelium for ocular surface disease. J Mater Sci Mater Med 18:329–338

    Article  PubMed  CAS  Google Scholar 

  • Papini S, Cecchetti D, Campani D, Fitzgerald W, Grivel JC, Chen S, Margolis L, Revoltella RP (2003) Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture. Stem Cells 21:481–494

    Article  PubMed  Google Scholar 

  • Patrick CW Jr, Uthamanthil R, Beahm E, Frye C (2008) Animal models for adipose tissue engineering. Tissue Eng Part B Rev 14(2):167–178

    Article  PubMed  CAS  Google Scholar 

  • Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev 14(1):105–118

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  PubMed  CAS  Google Scholar 

  • Riedel F, Goessler UR, Stern-Straeter J, Riedel K, Hörmann K (2008) Regenerative medicine in head and neck reconstructive surgery. HNO 56(3):262–274

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Heine UI, Flanders KC, Sporn MB (1990) Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann N Y Acad Sci 580:225–232

    Article  PubMed  CAS  Google Scholar 

  • Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y (2000) Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 70:1588–1598

    Article  PubMed  CAS  Google Scholar 

  • Rubin JP, Bennett JM, Doctor JS, Tebbets BM, Marra KG (2007) Collagenous microbeads as a scaffold for tissue engineering with adipose-derived stem cells. Plast Reconstr Surg 120(2):414–424

    Article  PubMed  CAS  Google Scholar 

  • Sarkanen JR, Kaila V, Mannerström B, Räty S, Kuokkanen H, Miettinen S, Ylikomi T (2011) Human adipose tissue extract induces angiogenesis and adipogenesis in vitro. Tissue Eng Part A. doi:10/ten.tea.2010.0712

    PubMed  Google Scholar 

  • Sato C, Tsuboi R, Shi CM, Rubin JS, Ogawa H (1995) Comparative study of hepatocyte growth factor/ scatter factor and keratinocyte growth factor effects on human keratinocytes. J Invest Dermatol 104:958–963

    Article  PubMed  CAS  Google Scholar 

  • Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827

    Article  PubMed  Google Scholar 

  • Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60(5):538–544

    Article  PubMed  CAS  Google Scholar 

  • Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74B:782–788

    Article  CAS  Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258

    Article  PubMed  CAS  Google Scholar 

  • Shure D, Senior RM, Griffin GL, Deue’l TF (1992) PDGF AA homodimers are potent chemoattractants for fibroblasts and neutrophils, and for monocytes activated by lymphocytes or cytokines. Biochem Biophys Res Commun 186:1510–1514

    Article  PubMed  CAS  Google Scholar 

  • Smahel J (1989) Experimental implantation of adipose tissue fragments. Br J Plast Surg 42:207–211

    Article  PubMed  CAS  Google Scholar 

  • Stillaert FB, Di Bartolo C, Hunt JA, Rhodes NP, Tognana E, Monstrey S, Blondeel PN (2008) Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds. Biomaterials 29(29):3953–3959

    Article  PubMed  CAS  Google Scholar 

  • Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451

    Article  PubMed  CAS  Google Scholar 

  • Tagashira S, Harada H, Katsumata T, Itoh N, Nakatsuka M (1997) Cloning of mouse FGF10 and up-regulation of its gene expression during wound healing. Gene 197:399–404

    Article  PubMed  CAS  Google Scholar 

  • Tamama K, Kawasaki H, Wells A (2010) Epidermal Growth Factor (EGF) treatment on Multipotential Stromal Cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol. doi:10.1155/2010/795385

    PubMed  Google Scholar 

  • Tholpady SS, Llull R, Ogle RC, Rubin JP, Futrell JW, Katz AJ (2006) Adipose tissue: stem cells and beyond. Clin Plast Surg 33(1):55–62

    Article  PubMed  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    Article  PubMed  CAS  Google Scholar 

  • Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5:1002–1010

    Article  PubMed  Google Scholar 

  • von Heimburg D, Hemmrich K, Zachariah S, Staiger H, Pallua N (2005) Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir Physiol Neurobiol 146:107–116

    Article  Google Scholar 

  • Wei Y, Hu Y, Lv R, Li D (2006) Regulation of adipose-derived adult stem cells differentiating into chondrocytes with the use of rhBMP-2. Cytotherapy 8(6):570–579

    Article  PubMed  CAS  Google Scholar 

  • Wells A, Ware MF, Allen FD, Lauffenburger DA (1999) Shaping up for shipping out: PLCγ signaling of morphology changes in EGF-stimulated fibroblast migration. Cell Motil Cytoskeleton 44(4):227–233

    Article  PubMed  CAS  Google Scholar 

  • Wong T, McGrath JA, Navsaria H (2007) The role of fibroblasts in tissue engineering and regeneration. Br J Dermatol 156(6):1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Yuksel E, Weinfeld AB, Cleek R, Waugh JM, Jensen J, Boutros S et al (2000) De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microshperes in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg 105:1721–1729

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maike Keck MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Keck, M., Lumenta, D.B., Kamolz, LP. (2013). Skin Tissue Engineering. In: Kamolz, LP., Lumenta, D. (eds) Dermal Replacements in General, Burn, and Plastic Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1586-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1586-2_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1585-5

  • Online ISBN: 978-3-7091-1586-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics